parlons-nous / app.py
aurelben's picture
change ui add audio
8a93bca
raw
history blame
2.55 kB
import os
import gradio as gr
import numpy as np
import torch
from groq import Groq
from transformers import pipeline
from transformers.utils import is_flash_attn_2_available
from TTS.api import TTS
transcriber = pipeline("automatic-speech-recognition",
model="openai/whisper-large-v3",
torch_dtype=torch.float16,
device="cuda:0",
model_kwargs={"attn_implementation": "flash_attention_2"} if is_flash_attn_2_available() else {"attn_implementation": "sdpa"},
)
groq_client = Groq(api_key=os.getenv('GROQ_API_KEY'))
def transcribe(stream, new_chunk):
"""
Transcribes using whisper
"""
sr, y = new_chunk
# Convert stereo to mono if necessary
if y.ndim == 2 and y.shape[1] == 2:
y = y.mean(axis=1) # Averaging both channels if stereo
y = y.astype(np.float32)
# Normalization
y /= np.max(np.abs(y))
if stream is not None:
stream = np.concatenate([stream, y])
else:
stream = y
return stream, transcriber({"sampling_rate": sr, "raw": stream})["text"]
def autocomplete(text):
"""
Autocomplete the text using Gemma.
"""
if text != "":
response = groq_client.chat.completions.create(
model='gemma-7b-it',
messages=[{"role": "system", "content": "You are a friendly assistant named Gemma."},
{"role": "user", "content": text}]
)
return response.choices[0].message.content
def process_audio(input_audio, new_chunk):
"""
Process the audio input by transcribing and completing the sentences.
Accumulate results to return to Gradio interface.
"""
stream, transcription = transcribe(input_audio, new_chunk)
text = autocomplete(transcription)
print (transcription, text)
api = TTS(model_name="tts_models/fra/fairseq/vits").to("cuda")
api.tts_to_file(text, file_path="output.wav")
audio = "./output.wav"
return stream, text, audio
demo = gr.Interface(
fn = process_audio,
inputs = ["state", gr.Audio(sources=["microphone"], streaming=True)],
outputs = ["state", gr.Markdown(), gr.Audio(interactive=False, autoplay=True)],
title="Parlons nous ☎️",
description="Powered by [whisper-base-en](https://huggingface.co/openai/whisper-base.en), and [gemma-7b-it](https://huggingface.co/google/gemma-7b-it) (via [Groq](https://groq.com/))",
live=True,
allow_flagging="never"
)
demo.launch()