wissamantoun commited on
Commit
c6d8cfb
1 Parent(s): 7903030

removed ensembling in SA (RAM issues)

Browse files
Files changed (1) hide show
  1. backend/services.py +35 -35
backend/services.py CHANGED
@@ -203,30 +203,30 @@ class SentimentAnalyzer:
203
  def __init__(self):
204
  self.sa_models = [
205
  "sa_trial5_1",
206
- "sa_no_aoa_in_neutral",
207
- "sa_cnnbert",
208
- "sa_sarcasm",
209
- "sar_trial10",
210
- "sa_no_AOA",
211
  ]
212
  download_models(self.sa_models)
213
  # fmt: off
214
  self.processors = {
215
  "sa_trial5_1": Trial5ArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
216
- "sa_no_aoa_in_neutral": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'),
217
- "sa_cnnbert": CNNMarbertArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
218
- "sa_sarcasm": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
219
- "sar_trial10": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
220
- "sa_no_AOA": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'),
221
  }
222
 
223
  self.pipelines = {
224
  "sa_trial5_1": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_trial5_1",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_trial5_1")],
225
- "sa_no_aoa_in_neutral": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_no_aoa_in_neutral",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_no_aoa_in_neutral")],
226
- "sa_cnnbert": [CNNTextClassificationPipeline("{}/train_{}/best_model".format("sa_cnnbert",i), device=-1, return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_cnnbert")],
227
- "sa_sarcasm": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_sarcasm",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_sarcasm")],
228
- "sar_trial10": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sar_trial10",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sar_trial10")],
229
- "sa_no_AOA": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_no_AOA",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_no_AOA")],
230
  }
231
  # fmt: on
232
 
@@ -324,25 +324,25 @@ class SentimentAnalyzer:
324
 
325
  def predict(self, texts: List[str]):
326
  logger.info(f"Predicting for: {texts}")
327
- (
328
- new_balanced_label,
329
- new_balanced_score,
330
- new_balanced_score_list,
331
- ) = self.get_preds_from_a_model(texts, "sa_no_aoa_in_neutral")
332
- (
333
- cnn_marbert_label,
334
- cnn_marbert_score,
335
- cnn_marbert_score_list,
336
- ) = self.get_preds_from_a_model(texts, "sa_cnnbert")
337
  trial5_label, trial5_score, trial5_score_list = self.get_preds_from_a_model(
338
  texts, "sa_trial5_1"
339
  )
340
- no_aoa_label, no_aoa_score, no_aoa_score_list = self.get_preds_from_a_model(
341
- texts, "sa_no_AOA"
342
- )
343
- sarcasm_label, sarcasm_score, sarcasm_score_list = self.get_preds_from_a_model(
344
- texts, "sa_sarcasm"
345
- )
346
 
347
  id_label_map = {0: "Positive", 1: "Neutral", 2: "Negative"}
348
 
@@ -350,11 +350,11 @@ class SentimentAnalyzer:
350
  final_ensemble_score = []
351
  final_ensemble_all_score = []
352
  for entry in zip(
353
- new_balanced_score_list,
354
- cnn_marbert_score_list,
355
  trial5_score_list,
356
- no_aoa_score_list,
357
- sarcasm_score_list,
358
  ):
359
  pos_score = 0
360
  neu_score = 0
 
203
  def __init__(self):
204
  self.sa_models = [
205
  "sa_trial5_1",
206
+ # "sa_no_aoa_in_neutral",
207
+ # "sa_cnnbert",
208
+ # "sa_sarcasm",
209
+ # "sar_trial10",
210
+ # "sa_no_AOA",
211
  ]
212
  download_models(self.sa_models)
213
  # fmt: off
214
  self.processors = {
215
  "sa_trial5_1": Trial5ArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
216
+ # "sa_no_aoa_in_neutral": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'),
217
+ # "sa_cnnbert": CNNMarbertArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
218
+ # "sa_sarcasm": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
219
+ # "sar_trial10": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'),
220
+ # "sa_no_AOA": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'),
221
  }
222
 
223
  self.pipelines = {
224
  "sa_trial5_1": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_trial5_1",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_trial5_1")],
225
+ # "sa_no_aoa_in_neutral": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_no_aoa_in_neutral",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_no_aoa_in_neutral")],
226
+ # "sa_cnnbert": [CNNTextClassificationPipeline("{}/train_{}/best_model".format("sa_cnnbert",i), device=-1, return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_cnnbert")],
227
+ # "sa_sarcasm": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_sarcasm",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_sarcasm")],
228
+ # "sar_trial10": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sar_trial10",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sar_trial10")],
229
+ # "sa_no_AOA": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_no_AOA",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_no_AOA")],
230
  }
231
  # fmt: on
232
 
 
324
 
325
  def predict(self, texts: List[str]):
326
  logger.info(f"Predicting for: {texts}")
327
+ # (
328
+ # new_balanced_label,
329
+ # new_balanced_score,
330
+ # new_balanced_score_list,
331
+ # ) = self.get_preds_from_a_model(texts, "sa_no_aoa_in_neutral")
332
+ # (
333
+ # cnn_marbert_label,
334
+ # cnn_marbert_score,
335
+ # cnn_marbert_score_list,
336
+ # ) = self.get_preds_from_a_model(texts, "sa_cnnbert")
337
  trial5_label, trial5_score, trial5_score_list = self.get_preds_from_a_model(
338
  texts, "sa_trial5_1"
339
  )
340
+ # no_aoa_label, no_aoa_score, no_aoa_score_list = self.get_preds_from_a_model(
341
+ # texts, "sa_no_AOA"
342
+ # )
343
+ # sarcasm_label, sarcasm_score, sarcasm_score_list = self.get_preds_from_a_model(
344
+ # texts, "sa_sarcasm"
345
+ # )
346
 
347
  id_label_map = {0: "Positive", 1: "Neutral", 2: "Negative"}
348
 
 
350
  final_ensemble_score = []
351
  final_ensemble_all_score = []
352
  for entry in zip(
353
+ # new_balanced_score_list,
354
+ # cnn_marbert_score_list,
355
  trial5_score_list,
356
+ # no_aoa_score_list,
357
+ # sarcasm_score_list,
358
  ):
359
  pos_score = 0
360
  neu_score = 0