Spaces:
Running
Running
import re | |
import numpy as np | |
import psutil | |
import os | |
from tqdm.auto import tqdm | |
import logging | |
logger = logging.getLogger(__name__) | |
def get_current_ram_usage(): | |
ram = psutil.virtual_memory() | |
return ram.available / 1024 / 1024 / 1024, ram.total / 1024 / 1024 / 1024 | |
def download_models(models): | |
for model in tqdm(models, desc="Downloading models"): | |
logger.info(f"Downloading {model}") | |
for i in range(0, 5): | |
curr_dir = f"{model}/train_{i}/best_model/" | |
os.makedirs(curr_dir, exist_ok=True) | |
os.system( | |
f"wget -q https://huggingface.co/researchaccount/{model}/resolve/main/train_{i}/best_model/config.json -P {curr_dir}" | |
) | |
os.system( | |
f"wget -q https://huggingface.co/researchaccount/{model}/resolve/main/train_{i}/best_model/pytorch_model.bin -P {curr_dir}" | |
) | |
os.system( | |
f"wget -q https://huggingface.co/researchaccount/{model}/resolve/main/train_{i}/best_model/special_tokens_map.json -P {curr_dir}" | |
) | |
os.system( | |
f"wget -q https://huggingface.co/researchaccount/{model}/resolve/main/train_{i}/best_model/tokenizer_config.json -P {curr_dir}" | |
) | |
os.system( | |
f"wget -q https://huggingface.co/researchaccount/{model}/resolve/main/train_{i}/best_model/training_args.bin -P {curr_dir}" | |
) | |
os.system( | |
f"wget -q https://huggingface.co/researchaccount/{model}/resolve/main/train_{i}/best_model/vocab.txt -P {curr_dir}" | |
) | |
def softmax(x): | |
return np.exp(x) / sum(np.exp(x)) | |
def ga(file): | |
code = """ | |
<!-- Global site tag (gtag.js) - Google Analytics --> | |
<script async src="https://www.googletagmanager.com/gtag/js?id=G-NH9HWCW08F"></script> | |
<script> | |
window.dataLayer = window.dataLayer || []; | |
function gtag(){dataLayer.push(arguments);} | |
gtag('js', new Date()); | |
gtag('config', 'G-NH9HWCW08F'); | |
</script> | |
""" | |
a = os.path.dirname(file) + "/static/index.html" | |
with open(a, "r") as f: | |
data = f.read() | |
if len(re.findall("G-", data)) == 0: | |
with open(a, "w") as ff: | |
newdata = re.sub("<head>", "<head>" + code, data) | |
ff.write(newdata) | |