Spaces:
Runtime error
Runtime error
import json | |
import logging | |
import os | |
from functools import lru_cache | |
from typing import List | |
from urllib.parse import unquote | |
import more_itertools | |
import pandas as pd | |
import requests | |
import streamlit as st | |
import wikipedia | |
from codetiming import Timer | |
from fuzzysearch import find_near_matches | |
from googleapi import google | |
from tqdm.auto import tqdm | |
from transformers import ( | |
AutoTokenizer, | |
GPT2LMHeadModel, | |
GPT2Tokenizer, | |
pipeline, | |
set_seed, | |
) | |
from .modeling_gpt2 import GPT2LMHeadModel as GROVERLMHeadModel | |
from .preprocess import ArabertPreprocessor | |
from .sa_utils import * | |
from .utils import download_models, softmax | |
logger = logging.getLogger(__name__) | |
# Taken and Modified from https://huggingface.co/spaces/flax-community/chef-transformer/blob/main/app.py | |
class TextGeneration: | |
def __init__(self): | |
self.debug = False | |
self.generation_pipline = {} | |
self.preprocessor = ArabertPreprocessor(model_name="aragpt2-mega") | |
self.tokenizer = GPT2Tokenizer.from_pretrained( | |
"aubmindlab/aragpt2-mega", use_fast=False | |
) | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
self.API_KEY = os.getenv("API_KEY") | |
self.headers = {"Authorization": f"Bearer {self.API_KEY}"} | |
# self.model_names_or_paths = { | |
# "aragpt2-medium": "D:/ML/Models/aragpt2-medium", | |
# "aragpt2-base": "D:/ML/Models/aragpt2-base", | |
# } | |
self.model_names_or_paths = { | |
"aragpt2-medium": "aubmindlab/aragpt2-medium", | |
"aragpt2-base": "aubmindlab/aragpt2-base", | |
"aragpt2-large": "aubmindlab/aragpt2-large", | |
"aragpt2-mega": "aubmindlab/aragpt2-mega", | |
} | |
set_seed(42) | |
def load_pipeline(self): | |
for model_name, model_path in self.model_names_or_paths.items(): | |
if "base" in model_name or "medium" in model_name: | |
self.generation_pipline[model_name] = pipeline( | |
"text-generation", | |
model=GPT2LMHeadModel.from_pretrained(model_path), | |
tokenizer=self.tokenizer, | |
device=-1, | |
) | |
else: | |
self.generation_pipline[model_name] = pipeline( | |
"text-generation", | |
model=GROVERLMHeadModel.from_pretrained(model_path), | |
tokenizer=self.tokenizer, | |
device=-1, | |
) | |
def load(self): | |
if not self.debug: | |
self.load_pipeline() | |
def generate( | |
self, | |
model_name, | |
prompt, | |
max_new_tokens: int, | |
temperature: float, | |
top_k: int, | |
top_p: float, | |
repetition_penalty: float, | |
no_repeat_ngram_size: int, | |
do_sample: bool, | |
num_beams: int, | |
): | |
logger.info(f"Generating with {model_name}") | |
prompt = self.preprocessor.preprocess(prompt) | |
return_full_text = False | |
return_text = True | |
num_return_sequences = 1 | |
pad_token_id = 0 | |
eos_token_id = 0 | |
input_tok = self.tokenizer.tokenize(prompt) | |
max_length = len(input_tok) + max_new_tokens | |
if max_length > 1024: | |
max_length = 1024 | |
if not self.debug: | |
generated_text = self.generation_pipline[model_name.lower()]( | |
prompt, | |
max_length=max_length, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
no_repeat_ngram_size=no_repeat_ngram_size, | |
pad_token_id=pad_token_id, | |
eos_token_id=eos_token_id, | |
return_full_text=return_full_text, | |
return_text=return_text, | |
do_sample=do_sample, | |
num_beams=num_beams, | |
num_return_sequences=num_return_sequences, | |
)[0]["generated_text"] | |
else: | |
generated_text = self.generate_by_query( | |
prompt, | |
model_name, | |
max_length=max_length, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
no_repeat_ngram_size=no_repeat_ngram_size, | |
pad_token_id=pad_token_id, | |
eos_token_id=eos_token_id, | |
return_full_text=return_full_text, | |
return_text=return_text, | |
do_sample=do_sample, | |
num_beams=num_beams, | |
num_return_sequences=num_return_sequences, | |
) | |
# print(generated_text) | |
if isinstance(generated_text, dict): | |
if "error" in generated_text: | |
if "is currently loading" in generated_text["error"]: | |
return f"Model is currently loading, estimated time is {generated_text['estimated_time']}" | |
return generated_text["error"] | |
else: | |
return "Something happened 🤷♂️!!" | |
else: | |
generated_text = generated_text[0]["generated_text"] | |
logger.info(f"Prompt: {prompt}") | |
logger.info(f"Generated text: {generated_text}") | |
return self.preprocessor.unpreprocess(generated_text) | |
def query(self, payload, model_name): | |
data = json.dumps(payload) | |
url = ( | |
"https://api-inference.huggingface.co/models/aubmindlab/" | |
+ model_name.lower() | |
) | |
response = requests.request("POST", url, headers=self.headers, data=data) | |
return json.loads(response.content.decode("utf-8")) | |
def generate_by_query( | |
self, | |
prompt: str, | |
model_name: str, | |
max_length: int, | |
temperature: float, | |
top_k: int, | |
top_p: float, | |
repetition_penalty: float, | |
no_repeat_ngram_size: int, | |
pad_token_id: int, | |
eos_token_id: int, | |
return_full_text: int, | |
return_text: int, | |
do_sample: bool, | |
num_beams: int, | |
num_return_sequences: int, | |
): | |
payload = { | |
"inputs": prompt, | |
"parameters": { | |
"max_length ": max_length, | |
"top_k": top_k, | |
"top_p": top_p, | |
"temperature": temperature, | |
"repetition_penalty": repetition_penalty, | |
"no_repeat_ngram_size": no_repeat_ngram_size, | |
"pad_token_id": pad_token_id, | |
"eos_token_id": eos_token_id, | |
"return_full_text": return_full_text, | |
"return_text": return_text, | |
"pad_token_id": pad_token_id, | |
"do_sample": do_sample, | |
"num_beams": num_beams, | |
"num_return_sequences": num_return_sequences, | |
}, | |
"options": { | |
"use_cache": True, | |
}, | |
} | |
return self.query(payload, model_name) | |
class SentimentAnalyzer: | |
def __init__(self): | |
self.sa_models = [ | |
"sa_trial5_1", | |
"sa_no_aoa_in_neutral", | |
"sa_cnnbert", | |
"sa_sarcasm", | |
"sar_trial10", | |
"sa_no_AOA", | |
] | |
download_models(self.sa_models) | |
# fmt: off | |
self.processors = { | |
"sa_trial5_1": Trial5ArabicPreprocessor(model_name='UBC-NLP/MARBERT'), | |
"sa_no_aoa_in_neutral": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'), | |
"sa_cnnbert": CNNMarbertArabicPreprocessor(model_name='UBC-NLP/MARBERT'), | |
"sa_sarcasm": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'), | |
"sar_trial10": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'), | |
"sa_no_AOA": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'), | |
} | |
self.pipelines = { | |
"sa_trial5_1": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_trial5_1",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_trial5_1")], | |
"sa_no_aoa_in_neutral": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_no_aoa_in_neutral",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_no_aoa_in_neutral")], | |
"sa_cnnbert": [CNNTextClassificationPipeline("{}/train_{}/best_model".format("sa_cnnbert",i), device=-1, return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_cnnbert")], | |
"sa_sarcasm": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_sarcasm",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_sarcasm")], | |
"sar_trial10": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sar_trial10",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sar_trial10")], | |
"sa_no_AOA": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_no_AOA",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_no_AOA")], | |
} | |
# fmt: on | |
def get_preds_from_sarcasm(self, texts): | |
prep = self.processors["sar_trial10"] | |
prep_texts = [prep.preprocess(x) for x in texts] | |
preds_df = pd.DataFrame([]) | |
for i in range(0, 5): | |
preds = [] | |
for s in more_itertools.chunked(list(prep_texts), 128): | |
preds.extend(self.pipelines["sar_trial10"][i](s)) | |
preds_df[f"model_{i}"] = preds | |
final_labels = [] | |
final_scores = [] | |
for id, row in preds_df.iterrows(): | |
pos_total = 0 | |
neu_total = 0 | |
for pred in row[:]: | |
pos_total += pred[0]["score"] | |
neu_total += pred[1]["score"] | |
pos_avg = pos_total / len(row[:]) | |
neu_avg = neu_total / len(row[:]) | |
final_labels.append( | |
self.pipelines["sar_trial10"][0].model.config.id2label[ | |
np.argmax([pos_avg, neu_avg]) | |
] | |
) | |
final_scores.append(np.max([pos_avg, neu_avg])) | |
return final_labels, final_scores | |
def get_preds_from_a_model(self, texts: List[str], model_name): | |
try: | |
prep = self.processors[model_name] | |
prep_texts = [prep.preprocess(x) for x in texts] | |
if model_name == "sa_sarcasm": | |
sarcasm_label, _ = self.get_preds_from_sarcasm(texts) | |
sarcastic_map = {"Not_Sarcastic": "غير ساخر", "Sarcastic": "ساخر"} | |
labeled_prep_texts = [] | |
for t, l in zip(prep_texts, sarcasm_label): | |
labeled_prep_texts.append(sarcastic_map[l] + " [SEP] " + t) | |
preds_df = pd.DataFrame([]) | |
for i in range(0, 5): | |
preds = [] | |
for s in more_itertools.chunked(list(prep_texts), 128): | |
preds.extend(self.pipelines[model_name][i](s)) | |
preds_df[f"model_{i}"] = preds | |
final_labels = [] | |
final_scores = [] | |
final_scores_list = [] | |
for id, row in preds_df.iterrows(): | |
pos_total = 0 | |
neg_total = 0 | |
neu_total = 0 | |
for pred in row[2:]: | |
pos_total += pred[0]["score"] | |
neu_total += pred[1]["score"] | |
neg_total += pred[2]["score"] | |
pos_avg = pos_total / 5 | |
neu_avg = neu_total / 5 | |
neg_avg = neg_total / 5 | |
if model_name == "sa_no_aoa_in_neutral": | |
final_labels.append( | |
self.pipelines[model_name][0].model.config.id2label[ | |
np.argmax([neu_avg, neg_avg, pos_avg]) | |
] | |
) | |
else: | |
final_labels.append( | |
self.pipelines[model_name][0].model.config.id2label[ | |
np.argmax([pos_avg, neu_avg, neg_avg]) | |
] | |
) | |
final_scores.append(np.max([pos_avg, neu_avg, neg_avg])) | |
final_scores_list.append((pos_avg, neu_avg, neg_avg)) | |
except RuntimeError as e: | |
if model_name == "sa_cnnbert": | |
return ( | |
["Neutral"] * len(texts), | |
[0.0] * len(texts), | |
[(0.0, 0.0, 0.0)] * len(texts), | |
) | |
else: | |
raise RuntimeError(e) | |
return final_labels, final_scores, final_scores_list | |
def predict(self, texts: List[str]): | |
logger.info(f"Predicting for: {texts}") | |
( | |
new_balanced_label, | |
new_balanced_score, | |
new_balanced_score_list, | |
) = self.get_preds_from_a_model(texts, "sa_no_aoa_in_neutral") | |
( | |
cnn_marbert_label, | |
cnn_marbert_score, | |
cnn_marbert_score_list, | |
) = self.get_preds_from_a_model(texts, "sa_cnnbert") | |
trial5_label, trial5_score, trial5_score_list = self.get_preds_from_a_model( | |
texts, "sa_trial5_1" | |
) | |
no_aoa_label, no_aoa_score, no_aoa_score_list = self.get_preds_from_a_model( | |
texts, "sa_no_AOA" | |
) | |
sarcasm_label, sarcasm_score, sarcasm_score_list = self.get_preds_from_a_model( | |
texts, "sa_sarcasm" | |
) | |
id_label_map = {0: "Positive", 1: "Neutral", 2: "Negative"} | |
final_ensemble_prediction = [] | |
final_ensemble_score = [] | |
final_ensemble_all_score = [] | |
for entry in zip( | |
new_balanced_score_list, | |
cnn_marbert_score_list, | |
trial5_score_list, | |
no_aoa_score_list, | |
sarcasm_score_list, | |
): | |
pos_score = 0 | |
neu_score = 0 | |
neg_score = 0 | |
for s in entry: | |
pos_score += s[0] * 1.57 | |
neu_score += s[1] * 0.98 | |
neg_score += s[2] * 0.93 | |
# weighted 2 | |
# pos_score += s[0]*1.67 | |
# neu_score += s[1] | |
# neg_score += s[2]*0.95 | |
final_ensemble_prediction.append( | |
id_label_map[np.argmax([pos_score, neu_score, neg_score])] | |
) | |
final_ensemble_score.append(np.max([pos_score, neu_score, neg_score])) | |
final_ensemble_all_score.append( | |
softmax(np.array([pos_score, neu_score, neg_score])).tolist() | |
) | |
logger.info(f"Result: {final_ensemble_prediction}") | |
logger.info(f"Score: {final_ensemble_score}") | |
logger.info(f"All Scores: {final_ensemble_all_score}") | |
return final_ensemble_prediction, final_ensemble_score, final_ensemble_all_score | |
wikipedia.set_lang("ar") | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
preprocessor = ArabertPreprocessor("wissamantoun/araelectra-base-artydiqa") | |
logger.info("Loading QA Pipeline...") | |
tokenizer = AutoTokenizer.from_pretrained("wissamantoun/araelectra-base-artydiqa") | |
qa_pipe = pipeline("question-answering", model="wissamantoun/araelectra-base-artydiqa") | |
logger.info("Finished loading QA Pipeline...") | |
def get_qa_answers(question): | |
logger.info("\n=================================================================") | |
logger.info(f"Question: {question}") | |
if "وسام أنطون" in question or "wissam antoun" in question.lower(): | |
return { | |
"title": "Creator", | |
"results": [ | |
{ | |
"score": 1.0, | |
"new_start": 0, | |
"new_end": 12, | |
"new_answer": "My Creator 😜", | |
"original": "My Creator 😜", | |
"link": "https://github.com/WissamAntoun/", | |
} | |
], | |
} | |
search_timer = Timer( | |
"search and wiki", text="Search and Wikipedia Time: {:.2f}", logger=logging.info | |
) | |
try: | |
search_timer.start() | |
search_results = google.search( | |
question + " site:ar.wikipedia.org", lang="ar", area="ar" | |
) | |
if len(search_results) == 0: | |
return {} | |
page_name = search_results[0].link.split("wiki/")[-1] | |
wiki_page = wikipedia.page(unquote(page_name)) | |
wiki_page_content = wiki_page.content | |
search_timer.stop() | |
except: | |
return {} | |
sections = [] | |
for section in re.split("== .+ ==[^=]", wiki_page_content): | |
if not section.isspace(): | |
prep_section = tokenizer.tokenize(preprocessor.preprocess(section)) | |
if len(prep_section) > 500: | |
subsections = [] | |
for subsection in re.split("=== .+ ===", section): | |
if subsection.isspace(): | |
continue | |
prep_subsection = tokenizer.tokenize( | |
preprocessor.preprocess(subsection) | |
) | |
subsections.append(subsection) | |
# logger.info(f"Subsection found with length: {len(prep_subsection)}") | |
sections.extend(subsections) | |
else: | |
# logger.info(f"Regular Section with length: {len(prep_section)}") | |
sections.append(section) | |
full_len_sections = [] | |
temp_section = "" | |
for section in sections: | |
if ( | |
len(tokenizer.tokenize(preprocessor.preprocess(temp_section))) | |
+ len(tokenizer.tokenize(preprocessor.preprocess(section))) | |
> 384 | |
): | |
if temp_section == "": | |
temp_section = section | |
continue | |
full_len_sections.append(temp_section) | |
# logger.info( | |
# f"full section length: {len(tokenizer.tokenize(preprocessor.preprocess(temp_section)))}" | |
# ) | |
temp_section = "" | |
else: | |
temp_section += " " + section + " " | |
if temp_section != "": | |
full_len_sections.append(temp_section) | |
reader_time = Timer("electra", text="Reader Time: {:.2f}", logger=logging.info) | |
reader_time.start() | |
results = qa_pipe( | |
question=[preprocessor.preprocess(question)] * len(full_len_sections), | |
context=[preprocessor.preprocess(x) for x in full_len_sections], | |
) | |
if not isinstance(results, list): | |
results = [results] | |
logger.info(f"Wiki Title: {unquote(page_name)}") | |
logger.info(f"Total Sections: {len(sections)}") | |
logger.info(f"Total Full Sections: {len(full_len_sections)}") | |
for result, section in zip(results, full_len_sections): | |
result["original"] = section | |
answer_match = find_near_matches( | |
" " + preprocessor.unpreprocess(result["answer"]) + " ", | |
result["original"], | |
max_l_dist=min(5, len(preprocessor.unpreprocess(result["answer"])) // 2), | |
max_deletions=0, | |
) | |
try: | |
result["new_start"] = answer_match[0].start | |
result["new_end"] = answer_match[0].end | |
result["new_answer"] = answer_match[0].matched | |
result["link"] = ( | |
search_results[0].link + "#:~:text=" + result["new_answer"].strip() | |
) | |
except: | |
result["new_start"] = result["start"] | |
result["new_end"] = result["end"] | |
result["new_answer"] = result["answer"] | |
result["original"] = preprocessor.preprocess(result["original"]) | |
result["link"] = search_results[0].link | |
logger.info(f"Answers: {preprocessor.preprocess(result['new_answer'])}") | |
sorted_results = sorted(results, reverse=True, key=lambda x: x["score"]) | |
return_dict = {} | |
return_dict["title"] = unquote(page_name) | |
return_dict["results"] = sorted_results | |
reader_time.stop() | |
logger.info(f"Total time spent: {reader_time.last + search_timer.last}") | |
return return_dict | |