Spaces:
Runtime error
Runtime error
import json | |
import os | |
import requests | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline, set_seed | |
from .modeling_gpt2 import GPT2LMHeadModel as GROVERLMHeadModel | |
from .preprocess import ArabertPreprocessor | |
# Taken and Modified from https://huggingface.co/spaces/flax-community/chef-transformer/blob/main/app.py | |
class TextGeneration: | |
def __init__(self): | |
self.debug = False | |
self.generation_pipline = {} | |
self.preprocessor = ArabertPreprocessor(model_name="aragpt2-mega") | |
self.tokenizer = GPT2Tokenizer.from_pretrained( | |
"aubmindlab/aragpt2-mega", use_fast=False | |
) | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
self.API_KEY = os.getenv("API_KEY") | |
self.headers = {"Authorization": f"Bearer {self.API_KEY}"} | |
# self.model_names_or_paths = { | |
# "aragpt2-medium": "D:/ML/Models/aragpt2-medium", | |
# "aragpt2-base": "D:/ML/Models/aragpt2-base", | |
# } | |
self.model_names_or_paths = { | |
"aragpt2-medium": "aubmindlab/aragpt2-medium", | |
"aragpt2-base": "aubmindlab/aragpt2-base", | |
"aragpt2-large": "aubmindlab/aragpt2-large", | |
"aragpt2-mega": "aubmindlab/aragpt2-mega", | |
} | |
set_seed(42) | |
def load_pipeline(self): | |
for model_name, model_path in self.model_names_or_paths.items(): | |
if "base" in model_name or "medium" in model_name: | |
self.generation_pipline[model_name] = pipeline( | |
"text-generation", | |
model=GPT2LMHeadModel.from_pretrained(model_path), | |
tokenizer=self.tokenizer, | |
device=-1, | |
) | |
else: | |
self.generation_pipline[model_name] = pipeline( | |
"text-generation", | |
model=GROVERLMHeadModel.from_pretrained(model_path), | |
tokenizer=self.tokenizer, | |
device=-1, | |
) | |
def load(self): | |
if not self.debug: | |
self.load_pipeline() | |
def generate( | |
self, | |
model_name, | |
prompt, | |
max_new_tokens: int, | |
temperature: float, | |
top_k: int, | |
top_p: float, | |
repetition_penalty: float, | |
no_repeat_ngram_size: int, | |
do_sample: bool, | |
num_beams: int, | |
): | |
prompt = self.preprocessor.preprocess(prompt) | |
return_full_text = False | |
return_text = True | |
num_return_sequences = 1 | |
pad_token_id = 0 | |
eos_token_id = 0 | |
input_tok = self.tokenizer.tokenize(prompt) | |
max_length = len(input_tok) + max_new_tokens | |
if max_length > 1024: | |
max_length = 1024 | |
if not self.debug: | |
generated_text = self.generation_pipline[model_name.lower()]( | |
prompt, | |
max_length=max_length, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
no_repeat_ngram_size=no_repeat_ngram_size, | |
pad_token_id=pad_token_id, | |
eos_token_id=eos_token_id, | |
return_full_text=return_full_text, | |
return_text=return_text, | |
do_sample=do_sample, | |
num_beams=num_beams, | |
num_return_sequences=num_return_sequences, | |
)[0]["generated_text"] | |
else: | |
generated_text = self.generate_by_query( | |
prompt, | |
model_name, | |
max_length=max_length, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
no_repeat_ngram_size=no_repeat_ngram_size, | |
pad_token_id=pad_token_id, | |
eos_token_id=eos_token_id, | |
return_full_text=return_full_text, | |
return_text=return_text, | |
do_sample=do_sample, | |
num_beams=num_beams, | |
num_return_sequences=num_return_sequences, | |
) | |
# print(generated_text) | |
if isinstance(generated_text, dict): | |
if "error" in generated_text: | |
if "is currently loading" in generated_text["error"]: | |
return f"Model is currently loading, estimated time is {generated_text['estimated_time']}" | |
return generated_text["error"] | |
else: | |
return "Something happened 🤷♂️!!" | |
else: | |
generated_text = generated_text[0]["generated_text"] | |
return self.preprocessor.unpreprocess(generated_text) | |
def query(self, payload, model_name): | |
data = json.dumps(payload) | |
url = ( | |
"https://api-inference.huggingface.co/models/aubmindlab/" | |
+ model_name.lower() | |
) | |
response = requests.request("POST", url, headers=self.headers, data=data) | |
return json.loads(response.content.decode("utf-8")) | |
def generate_by_query( | |
self, | |
prompt: str, | |
model_name: str, | |
max_length: int, | |
temperature: float, | |
top_k: int, | |
top_p: float, | |
repetition_penalty: float, | |
no_repeat_ngram_size: int, | |
pad_token_id: int, | |
eos_token_id: int, | |
return_full_text: int, | |
return_text: int, | |
do_sample: bool, | |
num_beams: int, | |
num_return_sequences: int, | |
): | |
payload = { | |
"inputs": prompt, | |
"parameters": { | |
"max_length ": max_length, | |
"top_k": top_k, | |
"top_p": top_p, | |
"temperature": temperature, | |
"repetition_penalty": repetition_penalty, | |
"no_repeat_ngram_size": no_repeat_ngram_size, | |
"pad_token_id": pad_token_id, | |
"eos_token_id": eos_token_id, | |
"return_full_text": return_full_text, | |
"return_text": return_text, | |
"pad_token_id": pad_token_id, | |
"do_sample": do_sample, | |
"num_beams": num_beams, | |
"num_return_sequences": num_return_sequences, | |
}, | |
"options": { | |
"use_cache": True, | |
}, | |
} | |
return self.query(payload, model_name) | |