Spaces:
Build error
Build error
i2i mode
Browse files
app.py
CHANGED
@@ -58,25 +58,33 @@ def download_url_img(url):
|
|
58 |
return False, []
|
59 |
|
60 |
|
61 |
-
def search(mode, text):
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
# Cat image downloaded from https://www.flickr.com/photos/blacktigersdream/23119711630
|
81 |
# cat_image = "./cat_example.jpg"
|
82 |
# Dog example downloaded from https://upload.wikimedia.org/wikipedia/commons/1/18/Dog_Breeds.jpg
|
@@ -109,11 +117,13 @@ if __name__ == "__main__":
|
|
109 |
encoder = TextEncoder()
|
110 |
imgs_emb_file_path = "./coco_img_emb"
|
111 |
imgs_emb, imgs_path = load_obj(imgs_emb_file_path)
|
|
|
112 |
print("prepare done!")
|
113 |
iface = gr.Interface(
|
114 |
fn=search,
|
115 |
inputs=[
|
116 |
-
gr.inputs.Radio([T2I]),
|
|
|
117 |
gr.inputs.Textbox(
|
118 |
lines=1, label="Text query", placeholder="Introduce the search text...",
|
119 |
),
|
|
|
58 |
return False, []
|
59 |
|
60 |
|
61 |
+
def search(mode, image, text):
|
62 |
+
|
63 |
+
translator = Translator(from_lang="chinese",to_lang="english")
|
64 |
+
text = translator.translate(text)
|
65 |
+
if mode == T2I:
|
66 |
+
dataset = torch.Tensor(encoder.encode(text)).unsqueeze(dim=0)
|
67 |
+
dataset_loader = DataLoader(dataset, batch_size=batch_size, num_workers=1, pin_memory=True, collate_fn=collate_fn_cap_padded)
|
68 |
+
caps_enc = list()
|
69 |
+
for i, (caps, length) in enumerate(dataset_loader, 0):
|
70 |
+
input_caps = caps
|
71 |
+
with torch.no_grad():
|
72 |
+
_, output_emb = join_emb(None, input_caps, length)
|
73 |
+
caps_enc.append(output_emb)
|
74 |
+
_stack = np.vstack(caps_enc)
|
75 |
+
|
76 |
+
elif mode == I2I:
|
77 |
+
dataset = torch.Tensor(image).unsqueeze(dim=0)
|
78 |
+
dataset_loader = DataLoader(dataset, batch_size=batch_size, num_workers=1, pin_memory=True, collate_fn=collate_fn_cap_padded)
|
79 |
+
img_enc = list()
|
80 |
+
for i, (imgs, length) in enumerate(dataset_loader, 0):
|
81 |
+
input_imgs = imgs
|
82 |
+
with torch.no_grad():
|
83 |
+
_, output_emb = join_emb(input_imgs, None, length)
|
84 |
+
img_enc.append(output_emb)
|
85 |
+
_stack = np.vstack(img_enc)
|
86 |
+
|
87 |
+
recall_imgs = recallTopK(_stack, imgs_emb, imgs_url, ks=100)
|
88 |
# Cat image downloaded from https://www.flickr.com/photos/blacktigersdream/23119711630
|
89 |
# cat_image = "./cat_example.jpg"
|
90 |
# Dog example downloaded from https://upload.wikimedia.org/wikipedia/commons/1/18/Dog_Breeds.jpg
|
|
|
117 |
encoder = TextEncoder()
|
118 |
imgs_emb_file_path = "./coco_img_emb"
|
119 |
imgs_emb, imgs_path = load_obj(imgs_emb_file_path)
|
120 |
+
imgs_url = [os.path.join("http://images.cocodataset.org/train2017", img_path.strip().split('_')[-1]) for img_path in imgs_path]
|
121 |
print("prepare done!")
|
122 |
iface = gr.Interface(
|
123 |
fn=search,
|
124 |
inputs=[
|
125 |
+
gr.inputs.Radio([I2I, T2I]),
|
126 |
+
gr.inputs.Image(label="Image to search", optional=True),
|
127 |
gr.inputs.Textbox(
|
128 |
lines=1, label="Text query", placeholder="Introduce the search text...",
|
129 |
),
|