atticus's picture
completed
30a0ec5
raw
history blame
9.04 kB
"""
****************** COPYRIGHT AND CONFIDENTIALITY INFORMATION ******************
Copyright (c) 2018 [Thomson Licensing]
All Rights Reserved
This program contains proprietary information which is a trade secret/business \
secret of [Thomson Licensing] and is protected, even if unpublished, under \
applicable Copyright laws (including French droit d'auteur) and/or may be \
subject to one or more patent(s).
Recipient is to retain this program in confidence and is not permitted to use \
or make copies thereof other than as permitted in a written agreement with \
[Thomson Licensing] unless otherwise expressly allowed by applicable laws or \
by [Thomson Licensing] under express agreement.
Thomson Licensing is a company of the group TECHNICOLOR
*******************************************************************************
This scripts permits one to reproduce training and experiments of:
Engilberge, M., Chevallier, L., Pérez, P., & Cord, M. (2018, April).
Finding beans in burgers: Deep semantic-visual embedding with localization.
In Proceedings of CVPR (pp. 3984-3993)
Author: Martin Engilberge
"""
import numpy as np
import cv2
import os
from scipy.misc import imresize
from pycocotools import mask as maskUtils
# ################### Functions for the pointing game evaluation ################### #
def regions_scale(x, y, rw, rh, h, w, org_dim, cc=None):
if cc is None:
fx = x * org_dim[0] / w
fy = y * org_dim[1] / h
srw = rw * org_dim[0] / w
srh = rh * org_dim[1] / h
else:
if (h > w):
r = float(h) / float(w)
sx = x * cc / w
sy = y * cc / w
srw = rw * cc / w
srh = rh * cc / w
fx = sx - (cc - org_dim[0]) / 2
fy = sy - (cc * r - org_dim[1]) / 2
else:
r = float(w) / float(h)
sx = x * cc / h
sy = y * cc / h
srw = rw * cc / h
srh = rh * cc / h
fy = sy - (cc - org_dim[1]) / 2
fx = sx - (cc * r - org_dim[0]) / 2
return fx, fy, srw, srh
def is_in_region(x, y, bx, by, w, h):
return (x > bx and x < (bx + w) and y > by and y < (by + h))
def one_img_process(act_map, caps_enc, caps_ori, fc_w, regions, h, w, org_dim, nmax=180, bilinear=False, cc=None, img_id=0):
size = act_map.shape[1:]
act_map = act_map.reshape(act_map.shape[0], -1)
prod = np.dot(fc_w, act_map)
if not os.path.exists("heat_map"):
os.makedirs("heat_map")
total = 0
correct = 0
# caps_ori = caps_ori.strip().split(" ")
for i, cap in enumerate(caps_enc):
order = np.argsort(cap)[::-1]
cap_ori = caps_ori[i].phrase
heat_map = np.reshape(
np.dot(np.abs(cap[order[:nmax]]), prod[order[:nmax]]), size)
# heat_map.save("heat_map/{}.jpg".format(i))
# print(img_path)
img_path = os.path.join("/home/atticus/proj/data/vg/VG_100K",
str(img_id) + ".jpg")
img_ori = cv2.imread(img_path)
if bilinear:
heat_map = imresize(heat_map, (org_dim[0], org_dim[1]))
x, y = np.unravel_index(heat_map.T.argmax(), heat_map.T.shape)
else:
x, y = np.unravel_index(heat_map.T.argmax(), heat_map.T.shape)
if cc is None:
x = (org_dim[0] / size[0]) * x
y = (org_dim[1] / size[1]) * y
else:
if (h > w):
r = float(h) / float(w)
x = (org_dim[0] / size[0]) * x + (cc - org_dim[0]) / 2
y = (org_dim[1] / size[1]) * y + (cc * r - org_dim[1]) / 2
else:
r = float(w) / float(h)
x = (org_dim[0] / size[0]) * x + (cc * r - org_dim[0]) / 2
y = (org_dim[1] / size[1]) * y + (cc - org_dim[1]) / 2
r = regions[i]
fx, fy, srw, srh = regions_scale(
r.x, r.y, r.width, r.height, h, w, org_dim, cc)
# heatmap = np.uint8(255 * heat_map)
heat_map = imresize(heat_map, (int(org_dim[0]), int(org_dim[1])))
img_ori = cv2.resize(img_ori, (int(org_dim[0]), int(org_dim[1])))
heatmap = np.uint8(255 - 255 * heat_map) # 将特征图转换为uint8格式
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) # 将特征图转为伪彩色图
heat_img = cv2.addWeighted(img_ori, 1, heatmap, 0.5, 0)
heat_ori = cv2.applyColorMap(heat_map, cv2.COLORMAP_JET)
cv2.imwrite("heat_map/{}-{}-ori.jpg".format(img_id, cap_ori), img_ori)
cv2.imwrite("heat_map/{}-{}.jpg".format(img_id, cap_ori), heat_img)
cv2.imwrite("heat_map/{}-{}-heat.jpg".format(img_id, cap_ori), heat_ori)
if is_in_region(x, y, fx, fy, srw, srh):
correct += 1
total += 1
return correct, total
def compute_pointing_game_acc(imgs_stack, caps_stack, caps_ori, nb_regions, regions, fc_w, org_dim, cc=None, nmax=180):
correct = 0
total = 0
for i, act_map in enumerate(imgs_stack):
seen_region = sum(nb_regions[:i])
caps_enc = caps_stack[seen_region:seen_region + nb_regions[i]]
region = regions[i][1]
h = regions[i][0].height
w = regions[i][0].width
img_id = regions[i][0].id
c, t = one_img_process(act_map, caps_enc, region, fc_w,
region, h, w, org_dim, nmax=nmax, cc=cc, img_id=img_id)
correct += c
total += t
# heat_map = generate_heat_map(act_map=act_map, caps_enc=caps_enc, fc_w=fc_w)
# heat_map.save("heat_map/{}.jpg".format(i))
return float(correct) / float(total)
# ################### Functions for the semantic segmentation evaluation ################### #
def generate_heat_map(act_map, caps_enc, fc_w, nmax=180, in_dim=(224, 224)):
size = act_map.shape[1:]
act_map = act_map.reshape(act_map.shape[0], -1)
prod = np.dot(fc_w, act_map)
order = np.argsort(caps_enc)[::-1]
# print order
heat_map = np.reshape(
np.dot(np.abs(caps_enc[order[:nmax]]), prod[order[:nmax]]), size)
# print heat_map
heat_map = imresize(heat_map, in_dim)
return heat_map
def gen_binary_heat_map(maps, concept, fc_w, c_thresh, in_dim=(400, 400)):
hm = generate_heat_map(maps, concept, fc_w, nmax=10, in_dim=in_dim)
# hm += abs(np.min(hm))
def thresh(a, coef):
return coef * (np.max(a) - np.min(a))
return np.int32(hm > thresh(hm, c_thresh))
def compute_iou(hm, target_mask):
return np.sum(hm * target_mask) / (np.sum(target_mask) + np.sum(hm) - np.sum(hm * target_mask))
def mask_from_poly(polygons, org_size, in_dim):
mask_poli = np.zeros((org_size[1], org_size[0]))
for i in range(len(polygons)):
if polygons[i][0] == "rle":
m = maskUtils.decode(polygons[i][1])
mask_poli += m.squeeze()
else:
poly = np.int32(np.array(polygons[i]).reshape(
(int(len(polygons[i]) / 2), 2)))
cv2.fillPoly(mask_poli, [poly], [1])
mask_poli = imresize(mask_poli, in_dim, interp="nearest")
return np.float32(mask_poli > 0)
def compute_semantic_seg(imgs_stack, sizes_list, target_ann, cats_stack, fc_w, c_thresh, in_dim=(200, 200)):
mAp = 0
IoUs = dict()
for k in cats_stack.keys():
IoUs[k] = list()
for i in range(imgs_stack.shape[0]):
if k in target_ann[i]:
target_mask = mask_from_poly(target_ann[i][k], sizes_list[i], in_dim)
heat_map = gen_binary_heat_map(imgs_stack[i], cats_stack[k], fc_w, c_thresh, in_dim=in_dim)
iou = compute_iou(heat_map, target_mask)
# last element of tuple is groundtruth target
IoUs[k] += [(iou, 1)]
else:
# if categorie k is not present in grountruth set iou at 0
IoUs[k] += [(0, 0)]
mAp = list()
for th in [0.3, 0.4, 0.5]:
mAp.append(get_map_at(IoUs, th))
return mAp
def compute_ap(rec, prec):
ap = 0
rec_prev = 0
for k in range(len(rec)):
prec_c = prec[k]
rec_c = rec[k]
ap += prec_c * (rec_c - rec_prev)
rec_prev = rec_c
return ap
def get_map_at(IoUs, at):
ap = dict()
for c in IoUs.keys():
sort_tupe_c = sorted(list(IoUs[c]), key=lambda tup: tup[0], reverse=True)
y_pred = [float(x[0] > at) for x in sort_tupe_c]
y_true = [x[1] for x in sort_tupe_c]
npos = np.sum(y_true)
nd = len(y_pred)
tp = np.zeros((nd))
fp = np.zeros((nd))
for i in range(1, nd):
if y_pred[i] == 1:
tp[i] = 1
else:
fp[i] = 1
# compute precision/recall
fp = np.cumsum(fp)
tp = np.cumsum(tp)
rec = tp / npos
prec = tp / (fp + tp)
prec[0] = 0
ap[c] = compute_ap(rec, prec)
return np.mean(list(ap.values()))