attention-refocusing's picture
Update app.py
5f3ed23
import gradio as gr
import torch
from omegaconf import OmegaConf
from gligen.task_grounded_generation import grounded_generation_box, load_ckpt, load_common_ckpt
import json
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from functools import partial
from collections import Counter
import math
import gc
from gradio import processing_utils
from typing import Optional
import warnings
from datetime import datetime
from example_component import create_examples
from huggingface_hub import hf_hub_download
hf_hub_download = partial(hf_hub_download, library_name="gligen_demo")
import cv2
import sys
sys.tracebacklimit = 0
def load_from_hf(repo_id, filename='diffusion_pytorch_model.bin', subfolder=None):
cache_file = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder)
return torch.load(cache_file, map_location='cpu')
def load_ckpt_config_from_hf(modality):
ckpt = load_from_hf('gligen/demo_ckpts_legacy', filename=f'{modality}.pth', subfolder='model')
config = load_from_hf('gligen/demo_ckpts_legacy', filename=f'{modality}.pth', subfolder='config')
return ckpt, config
def ckpt_load_helper(modality, is_inpaint, is_style, common_instances=None):
pretrained_ckpt_gligen, config = load_ckpt_config_from_hf(modality)
config = OmegaConf.create( config["_content"] ) # config used in training
config.alpha_scale = 1.0
if common_instances is None:
common_ckpt = load_from_hf('gligen/demo_ckpts_legacy', filename=f'common.pth', subfolder='model')
common_instances = load_common_ckpt(config, common_ckpt)
loaded_model_list = load_ckpt(config, pretrained_ckpt_gligen, common_instances)
return loaded_model_list, common_instances
class Instance:
def __init__(self, capacity = 2):
self.model_type = 'base'
self.loaded_model_list = {}
self.counter = Counter()
self.global_counter = Counter()
self.loaded_model_list['base'], self.common_instances = ckpt_load_helper(
'gligen-generation-text-box',
is_inpaint=False, is_style=False, common_instances=None
)
self.capacity = capacity
def _log(self, model_type, batch_size, instruction, phrase_list):
self.counter[model_type] += 1
self.global_counter[model_type] += 1
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print('[{}] Current: {}, All: {}. Samples: {}, prompt: {}, phrases: {}'.format(
current_time, dict(self.counter), dict(self.global_counter), batch_size, instruction, phrase_list
))
def get_model(self, model_type, batch_size, instruction, phrase_list):
if model_type in self.loaded_model_list:
self._log(model_type, batch_size, instruction, phrase_list)
return self.loaded_model_list[model_type]
if self.capacity == len(self.loaded_model_list):
least_used_type = self.counter.most_common()[-1][0]
del self.loaded_model_list[least_used_type]
del self.counter[least_used_type]
gc.collect()
torch.cuda.empty_cache()
self.loaded_model_list[model_type] = self._get_model(model_type)
self._log(model_type, batch_size, instruction, phrase_list)
return self.loaded_model_list[model_type]
def _get_model(self, model_type):
if model_type == 'base':
return ckpt_load_helper(
'gligen-generation-text-box',
is_inpaint=False, is_style=False, common_instances=self.common_instances
)[0]
elif model_type == 'inpaint':
return ckpt_load_helper(
'gligen-inpainting-text-box',
is_inpaint=True, is_style=False, common_instances=self.common_instances
)[0]
elif model_type == 'style':
return ckpt_load_helper(
'gligen-generation-text-image-box',
is_inpaint=False, is_style=True, common_instances=self.common_instances
)[0]
assert False
instance = Instance()
def load_clip_model():
from transformers import CLIPProcessor, CLIPModel
version = "openai/clip-vit-large-patch14"
model = CLIPModel.from_pretrained(version).cuda()
processor = CLIPProcessor.from_pretrained(version)
return {
'version': version,
'model': model,
'processor': processor,
}
clip_model = load_clip_model()
class ImageMask(gr.components.Image):
"""
Sets: source="canvas", tool="sketch"
"""
is_template = True
def __init__(self, **kwargs):
super().__init__(source="upload", tool="sketch", interactive=True, **kwargs)
def preprocess(self, x):
if x is None:
return x
if self.tool == "sketch" and self.source in ["upload", "webcam"] and type(x) != dict:
decode_image = processing_utils.decode_base64_to_image(x)
width, height = decode_image.size
img = np.asarray(decode_image)
return {'image':img, 'mask':binarize_2(img)}
mask = np.zeros((height, width, 4), dtype=np.uint8)
mask[..., -1] = 255
mask = self.postprocess(mask)
x = {'image': x, 'mask': mask}
print('vao preprocess-------------------------')
hh = super().preprocess(x)
if (hh['image'].min()!=255) and (hh['mask'][:,:,:3].max()==0):
hh['mask'] = binarize_2(hh['image'])
return hh
class Blocks(gr.Blocks):
def __init__(
self,
theme: str = "default",
analytics_enabled: Optional[bool] = None,
mode: str = "blocks",
title: str = "Gradio",
css: Optional[str] = None,
**kwargs,
):
self.extra_configs = {
'thumbnail': kwargs.pop('thumbnail', ''),
'url': kwargs.pop('url', 'https://gradio.app/'),
'creator': kwargs.pop('creator', '@teamGradio'),
}
super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs)
warnings.filterwarnings("ignore")
def get_config_file(self):
config = super(Blocks, self).get_config_file()
for k, v in self.extra_configs.items():
config[k] = v
return config
'''
inference model
'''
# @torch.no_grad()
def inference(task, language_instruction, phrase_list, location_list, inpainting_boxes_nodrop, image,
alpha_sample, guidance_scale, batch_size,
fix_seed, rand_seed, actual_mask, style_image,
*args, **kwargs):
# import pdb; pdb.set_trace()
# grounding_instruction = json.loads(grounding_instruction)
# phrase_list, location_list = [], []
# for k, v in grounding_instruction.items():
# phrase_list.append(k)
# location_list.append(v)
placeholder_image = Image.open('images/teddy.jpg').convert("RGB")
image_list = [placeholder_image] * len(phrase_list) # placeholder input for visual prompt, which is disabled
batch_size = int(batch_size)
if not 1 <= batch_size <= 4:
batch_size = 1
if style_image == None:
has_text_mask = 1
has_image_mask = 0 # then we hack above 'image_list'
else:
valid_phrase_len = len(phrase_list)
phrase_list += ['placeholder']
has_text_mask = [1]*valid_phrase_len + [0]
image_list = [placeholder_image]*valid_phrase_len + [style_image]
has_image_mask = [0]*valid_phrase_len + [1]
location_list += [ [0.0, 0.0, 1, 0.01] ] # style image grounding location
instruction = dict(
prompt = language_instruction,
phrases = phrase_list,
images = image_list,
locations = location_list,
alpha_type = [alpha_sample, 0, 1.0 - alpha_sample],
has_text_mask = has_text_mask,
has_image_mask = has_image_mask,
save_folder_name = language_instruction,
guidance_scale = guidance_scale,
batch_size = batch_size,
fix_seed = bool(fix_seed),
rand_seed = int(rand_seed),
actual_mask = actual_mask,
inpainting_boxes_nodrop = inpainting_boxes_nodrop,
)
get_model = partial(instance.get_model,
batch_size=batch_size,
instruction=language_instruction,
phrase_list=phrase_list)
with torch.autocast(device_type='cuda', dtype=torch.float16):
if task == 'User provide boxes' or 'Available boxes':
if style_image == None:
result = grounded_generation_box(get_model('base'), instruction, *args, **kwargs)
torch.cuda.empty_cache()
return result
else:
return grounded_generation_box(get_model('style'), instruction, *args, **kwargs)
def draw_box(boxes=[], texts=[], img=None):
if len(boxes) == 0 and img is None:
return None
if img is None:
img = Image.new('RGB', (512, 512), (255, 255, 255))
colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
draw = ImageDraw.Draw(img)
font = ImageFont.truetype("DejaVuSansMono.ttf", size=18)
for bid, box in enumerate(boxes):
draw.rectangle([box[0], box[1], box[2], box[3]], outline=colors[bid % len(colors)], width=4)
anno_text = texts[bid]
draw.rectangle([box[0], box[3] - int(font.size * 1.2), box[0] + int((len(anno_text) + 0.8) * font.size * 0.6), box[3]], outline=colors[bid % len(colors)], fill=colors[bid % len(colors)], width=4)
draw.text([box[0] + int(font.size * 0.2), box[3] - int(font.size*1.2)], anno_text, font=font, fill=(255,255,255))
return img
def get_concat(ims):
if len(ims) == 1:
n_col = 1
else:
n_col = 2
n_row = math.ceil(len(ims) / 2)
dst = Image.new('RGB', (ims[0].width * n_col, ims[0].height * n_row), color="white")
for i, im in enumerate(ims):
row_id = i // n_col
col_id = i % n_col
dst.paste(im, (im.width * col_id, im.height * row_id))
return dst
def auto_append_grounding(language_instruction, grounding_texts):
for grounding_text in grounding_texts:
if grounding_text.lower() not in language_instruction.lower() and grounding_text != 'auto':
language_instruction += "; " + grounding_text
return language_instruction
def generate(task, language_instruction, grounding_texts, sketch_pad,
alpha_sample, guidance_scale, batch_size,
fix_seed, rand_seed, use_actual_mask, append_grounding, style_cond_image,
state):
if 'boxes' not in state:
state['boxes'] = []
boxes = state['boxes']
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
# assert len(boxes) == len(grounding_texts)
if len(boxes) != len(grounding_texts):
if len(boxes) < len(grounding_texts):
raise ValueError("""The number of boxes should be equal to the number of grounding objects.
Number of boxes drawn: {}, number of grounding tokens: {}.
Please draw boxes accordingly on the sketch pad.""".format(len(boxes), len(grounding_texts)))
grounding_texts = grounding_texts + [""] * (len(boxes) - len(grounding_texts))
boxes = (np.asarray(boxes) / 512).tolist()
grounding_instruction = json.dumps({obj: box for obj,box in zip(grounding_texts, boxes)})
image = None
actual_mask = None
if append_grounding:
language_instruction = auto_append_grounding(language_instruction, grounding_texts)
gen_images, gen_overlays = inference(
task, language_instruction, grounding_texts,boxes, boxes, image,
alpha_sample, guidance_scale, batch_size,
fix_seed, rand_seed, actual_mask, style_cond_image, clip_model=clip_model,
)
blank_samples = batch_size % 2 if batch_size > 1 else 0
gen_images = [gr.Image.update(value=x, visible=True) for i,x in enumerate(gen_images)] \
+ [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
+ [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]
return gen_images + [state]
def binarize(x):
return (x != 0).astype('uint8') * 255
def binarize_2(x):
gray_image = cv2.cvtColor(x, cv2.COLOR_BGR2GRAY)
return (gray_image!=255).astype('uint8') * 255
def sized_center_crop(img, cropx, cropy):
y, x = img.shape[:2]
startx = x // 2 - (cropx // 2)
starty = y // 2 - (cropy // 2)
return img[starty:starty+cropy, startx:startx+cropx]
def sized_center_fill(img, fill, cropx, cropy):
y, x = img.shape[:2]
startx = x // 2 - (cropx // 2)
starty = y // 2 - (cropy // 2)
img[starty:starty+cropy, startx:startx+cropx] = fill
return img
def sized_center_mask(img, cropx, cropy):
y, x = img.shape[:2]
startx = x // 2 - (cropx // 2)
starty = y // 2 - (cropy // 2)
center_region = img[starty:starty+cropy, startx:startx+cropx].copy()
img = (img * 0.2).astype('uint8')
img[starty:starty+cropy, startx:startx+cropx] = center_region
return img
def center_crop(img, HW=None, tgt_size=(512, 512)):
if HW is None:
H, W = img.shape[:2]
HW = min(H, W)
img = sized_center_crop(img, HW, HW)
img = Image.fromarray(img)
img = img.resize(tgt_size)
return np.array(img)
def draw(task, input, grounding_texts, new_image_trigger, state, generate_parsed, box_image):
print('input', generate_parsed)
if type(input) == dict:
image = input['image']
mask = input['mask']
if generate_parsed==1:
generate_parsed = 0
# import pdb; pdb.set_trace()
print('do nothing')
return [box_image, new_image_trigger, 1., state, generate_parsed]
else:
mask = input
if mask.ndim == 3:
mask = mask[..., 0]
image_scale = 1.0
print('vao draw--------------------')
mask = binarize(mask)
if mask.shape != (512, 512):
# assert False, "should not receive any non- 512x512 masks."
if 'original_image' in state and state['original_image'].shape[:2] == mask.shape:
mask = center_crop(mask, state['inpaint_hw'])
image = center_crop(state['original_image'], state['inpaint_hw'])
else:
mask = np.zeros((512, 512), dtype=np.uint8)
mask = binarize(mask)
if type(mask) != np.ndarray:
mask = np.array(mask)
#
if mask.sum() == 0:
state = {}
print('delete state')
if True:
image = None
else:
image = Image.fromarray(image)
if 'boxes' not in state:
state['boxes'] = []
if 'masks' not in state or len(state['masks']) == 0 :
state['masks'] = []
last_mask = np.zeros_like(mask)
else:
last_mask = state['masks'][-1]
if type(mask) == np.ndarray and mask.size > 1 :
diff_mask = mask - last_mask
else:
diff_mask = np.zeros([])
if diff_mask.sum() > 0:
x1x2 = np.where(diff_mask.max(0) > 1)[0]
y1y2 = np.where(diff_mask.max(1) > 1)[0]
y1, y2 = y1y2.min(), y1y2.max()
x1, x2 = x1x2.min(), x1x2.max()
if (x2 - x1 > 5) and (y2 - y1 > 5):
state['masks'].append(mask.copy())
state['boxes'].append((x1, y1, x2, y2))
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
grounding_texts = [x for x in grounding_texts if len(x) > 0]
if len(grounding_texts) < len(state['boxes']):
grounding_texts += [f'Obj. {bid+1}' for bid in range(len(grounding_texts), len(state['boxes']))]
box_image = draw_box(state['boxes'], grounding_texts, image)
generate_parsed = 0
return [box_image, new_image_trigger, image_scale, state, generate_parsed]
def change_state(bboxes,layout, state, instruction, trigger_stage, boxes):
if trigger_stage ==0 :
return [boxes, state, 0]
# mask =
state['boxes'] = []
state['masks'] = []
image = None
list_boxes = bboxes.split('/')
result =[]
for b in list_boxes:
ints = b[1:-1].split(',')
l = []
for i in ints:
l.append(int(i))
result.append(l)
print('run change state')
for box in result:
state['boxes'].append(box)
grounding_texts = [x.strip() for x in instruction.split(';')]
grounding_texts = [x for x in grounding_texts if len(x) > 0]
if len(grounding_texts) < len(result):
grounding_texts += [f'Obj. {bid+1}' for bid in range(len(grounding_texts), len(result))]
box_image = draw_box(result, grounding_texts)
mask = binarize_2(layout['image'])
state['masks'].append(mask.copy())
# print('done change state', state)
print('done change state')
# import pdb; pdb.set_trace()
return [box_image,state, trigger_stage]
def example_click(name, grounding_instruction, instruction, bboxes,generate_parsed, trigger_parsed):
list_boxes = bboxes.split('/')
result =[]
for b in list_boxes:
ints = b[1:-1].split(',')
l = []
for i in ints:
l.append(int(i))
result.append(l)
print('run change state')
box_image = draw_box(result, instruction)
trigger_parsed += 1
print('done the example click')
return [box_image, trigger_parsed]
def clear(task, sketch_pad_trigger, batch_size, state,trigger_stage, switch_task=False):
sketch_pad_trigger = sketch_pad_trigger + 1
trigger_stage = 0
blank_samples = batch_size % 2 if batch_size > 1 else 0
out_images = [gr.Image.update(value=None, visible=True) for i in range(batch_size)] \
+ [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
+ [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]
state = {}
return [None, sketch_pad_trigger, None, 1.0] + out_images + [state] + [trigger_stage]
css = """
#img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img
{
height: var(--height) !important;
max-height: var(--height) !important;
min-height: var(--height) !important;
}
#paper-info a {
color:#008AD7;
text-decoration: none;
}
#paper-info a:hover {
cursor: pointer;
text-decoration: none;
}
#my_image > div.fixed-height
{
height: var(--height) !important;
}
"""
rescale_js = """
function(x) {
const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app');
let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0;
const image_width = root.querySelector('#img2img_image').clientWidth;
const target_height = parseInt(image_width * image_scale);
document.body.style.setProperty('--height', `${target_height}px`);
root.querySelectorAll('button.justify-center.rounded')[0].style.display='none';
root.querySelectorAll('button.justify-center.rounded')[1].style.display='none';
return x;
}
"""
# [<a href="https://arxiv.org/abs/2301.07093" target="_blank">Paper</a>]
with Blocks(
css=css,
analytics_enabled=False,
title="Attention-refocusing demo",
) as main:
description = """<p style="text-align: center; font-weight: bold;">
<span style="font-size: 28px">Grounded Text-to-Image Synthesis with Attention Refocusing</span>
<br>
<span style="font-size: 18px" id="paper-info">
[<a href="https://attention-refocusing.github.io/" target="_blank">Project Page</a>]
[<a href="https://github.com/Attention-Refocusing/attention-refocusing" target="_blank">GitHub</a>]
</span>
</p>
<p>
To identify the areas of interest based on specific spatial parameters, you need to (1) &#9000;&#65039; input the names of the concepts you're interested in <em> Grounding Instruction</em>, and (2) &#128433;&#65039; draw their corresponding bounding boxes using <em> Sketch Pad</em> -- the parsed boxes will automatically be showed up once you've drawn them.
<br>
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/gligen/demo?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a>
</p>
"""
gr.HTML(description)
with gr.Row():
with gr.Column(scale=4):
sketch_pad_trigger = gr.Number(value=0, visible=False)
sketch_pad_resize_trigger = gr.Number(value=0, visible=False)
trigger_stage = gr.Number(value=0, visible=False)
init_white_trigger = gr.Number(value=0, visible=False)
image_scale = gr.Number(value=1.0, elem_id="image_scale", visible=False)
new_image_trigger = gr.Number(value=0, visible=False)
text_box = gr.Textbox(visible=False)
generate_parsed = gr.Number(value=0, visible=False)
task = gr.Radio(
choices=["Available boxes", 'User provide boxes'],
type="value",
value="User provide boxes",
label="Task",
visible=False
)
language_instruction = gr.Textbox(
label="Language instruction",
)
grounding_instruction = gr.Textbox(
label="Grounding instruction (Separated by semicolon)",
)
with gr.Row():
sketch_pad = ImageMask(label="Sketch Pad", elem_id="img2img_image")
out_imagebox = gr.Image(type="pil",elem_id="my_image" ,label="Parsed Sketch Pad", shape=(512,512))
with gr.Row():
clear_btn = gr.Button(value='Clear')
gen_btn = gr.Button(value='Generate')
with gr.Row():
parsed_btn = gr.Button(value='generate parsed boxes', visible=False)
with gr.Accordion("Advanced Options", open=False):
with gr.Column():
alpha_sample = gr.Slider(minimum=0, maximum=1.0, step=0.1, value=0.3, label="Scheduled Sampling (Ο„)")
guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Guidance Scale")
batch_size = gr.Slider(minimum=1, maximum=4,visible=False, step=1, value=1, label="Number of Samples")
append_grounding = gr.Checkbox(value=True, label="Append grounding instructions to the caption")
use_actual_mask = gr.Checkbox(value=False, label="Use actual mask for inpainting", visible=False)
with gr.Row():
fix_seed = gr.Checkbox(value=True, label="Fixed seed")
rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=0, label="Seed")
with gr.Row():
use_style_cond = gr.Checkbox(value=False,visible=False, label="Enable Style Condition")
style_cond_image = gr.Image(type="pil",visible=False, label="Style Condition", interactive=True)
with gr.Column(scale=4):
gr.HTML('<span style="font-size: 20px; font-weight: bold">Generated Images</span>')
with gr.Row():
out_gen_1 = gr.Image(type="pil", visible=True, show_label=False)
out_gen_2 = gr.Image(type="pil", visible=False, show_label=False)
with gr.Row():
out_gen_3 = gr.Image(type="pil", visible=False, show_label=False)
out_gen_4 = gr.Image(type="pil", visible=False, show_label=False)
state = gr.State({})
class Controller:
def __init__(self):
self.calls = 0
self.tracks = 0
self.resizes = 0
self.scales = 0
def init_white(self, init_white_trigger):
self.calls += 1
return np.ones((512, 512), dtype='uint8') * 255, 1.0, init_white_trigger+1
def change_n_samples(self, n_samples):
blank_samples = n_samples % 2 if n_samples > 1 else 0
return [gr.Image.update(visible=True) for _ in range(n_samples + blank_samples)] \
+ [gr.Image.update(visible=False) for _ in range(4 - n_samples - blank_samples)]
controller = Controller()
main.load(
lambda x:x+1,
inputs=sketch_pad_trigger,
outputs=sketch_pad_trigger,
queue=False)
sketch_pad.edit(
draw,
inputs=[task, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state, generate_parsed, out_imagebox],
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state, generate_parsed],
queue=False,
)
trigger_stage.change(
change_state,
inputs=[text_box,sketch_pad, state, grounding_instruction, trigger_stage,out_imagebox],
outputs=[out_imagebox,state,trigger_stage],
queue=True
)
grounding_instruction.change(
draw,
inputs=[task, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state, generate_parsed,out_imagebox],
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state, generate_parsed],
queue=False,
)
clear_btn.click(
clear,
inputs=[task, sketch_pad_trigger, batch_size,trigger_stage, state],
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, out_gen_2, out_gen_3, out_gen_4, state, trigger_stage],
queue=False)
sketch_pad_trigger.change(
controller.init_white,
inputs=[init_white_trigger],
outputs=[sketch_pad, image_scale, init_white_trigger],
queue=False)
gen_btn.click(
generate,
inputs=[
task, language_instruction, grounding_instruction, sketch_pad,
alpha_sample, guidance_scale, batch_size,
fix_seed, rand_seed,
use_actual_mask,
append_grounding, style_cond_image,
state,
],
outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
queue=True
)
init_white_trigger.change(
None,
None,
init_white_trigger,
_js=rescale_js,
queue=False)
examples = [
[
'guide_imgs/0_a_cat_on_the_right_of_a_dog.jpg',
"a cat;a dog",
"a cat on the right of a dog",
'(291, 88, 481, 301)/(25, 64, 260, 391)',
1, 1
],
[
'guide_imgs/0_a_bus_on_the_left_of_a_car.jpg',#'guide_imgs/0_a_bus_on_the_left_of_a_car.jpg',
"a bus;a car",
"a bus and a car",
'(8,128,266,384)/(300,196,502,316)', #'(8,128,266,384)', #/(300,196,502,316)
1, 2
],
[
'guide_imgs/1_Two_cars_on_the_street..jpg',
"a car;a car",
"Two cars on the street.",
'(34, 98, 247, 264)/(271, 122, 481, 293)',
1, 3
],
[
'guide_imgs/80_two_apples_lay_side_by_side_on_a_wooden_table,_their_glossy_red_and_green_skins_glinting_in_the_sunlight..jpg',
"an apple;an apple",
"two apples lay side by side on a wooden table, their glossy red and green skins glinting in the sunlight.",
'(40, 210, 235, 450)/(275, 210, 470, 450)',
1, 4
],
[
'guide_imgs/10_A_banana_on_the_left_of_an_apple..jpg',
"a banana;an apple",
"A banana on the left of an apple.",
'(62, 193, 225, 354)/(300, 184, 432, 329)',
1, 5
],
[
'guide_imgs/15_A_pizza_on_the_right_of_a_suitcase..jpg',
"a pizza ;a suitcase",
"A pizza on the right of a suitcase.",
'(307, 112, 490, 280)/(41, 120, 244, 270)',
1, 6
],
[
'guide_imgs/1_A_wine_glass_on_top_of_a_dog..jpg',
"a wine glass;a dog",
"A wine glass on top of a dog.",
'(206, 78, 306, 214)/(137, 222, 367, 432)',
1, 7
]
,
[
'guide_imgs/2_A_bicycle_on_top_of_a_boat..jpg',
"a bicycle;a boat",
"A bicycle on top of a boat.",
'(185, 110, 335, 205)/(111, 228, 401, 373)',
1, 8
]
,
[
'guide_imgs/4_A_laptop_on_top_of_a_teddy_bear..jpg',
"a laptop;a teddy bear",
"A laptop on top of a teddy bear.",
'(180, 70, 332, 210)/(150, 240, 362, 420)',
1, 9
]
,
[
'guide_imgs/0_A_train_on_top_of_a_surfboard..jpg',
"a train;a surfboard",
"A train on top of a surfboard.",
'(130, 80, 385, 240)/(75, 260, 440, 450)',
1, 10
]
]
with gr.Column():
create_examples(
examples=examples,
inputs=[sketch_pad, grounding_instruction,language_instruction , text_box, generate_parsed, trigger_stage],
outputs=None,
fn=None,
cache_examples=False,
)
main.queue(concurrency_count=1, api_open=False)
main.launch(share=False, show_api=False, show_error=True, debug=False, server_name="0.0.0.0")