Spaces:
Running
Running
import os | |
import time | |
import logging | |
import math | |
import tqdm | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.distributed import init_process_group | |
from torch.nn.parallel import DistributedDataParallel | |
from vits_extend.dataloader import create_dataloader_train | |
from vits_extend.dataloader import create_dataloader_eval | |
from vits_extend.writer import MyWriter | |
from vits_extend.stft import TacotronSTFT | |
from vits_extend.stft_loss import MultiResolutionSTFTLoss | |
from vits_extend.validation import validate | |
from vits_decoder.discriminator import Discriminator | |
from vits.models import SynthesizerTrn | |
from vits import commons | |
from vits.losses import kl_loss | |
from vits.commons import clip_grad_value_ | |
def load_part(model, saved_state_dict): | |
if hasattr(model, 'module'): | |
state_dict = model.module.state_dict() | |
else: | |
state_dict = model.state_dict() | |
new_state_dict = {} | |
for k, v in state_dict.items(): | |
if k.startswith('TODO'): | |
new_state_dict[k] = v | |
else: | |
new_state_dict[k] = saved_state_dict[k] | |
if hasattr(model, 'module'): | |
model.module.load_state_dict(new_state_dict) | |
else: | |
model.load_state_dict(new_state_dict) | |
return model | |
def load_model(model, saved_state_dict): | |
if hasattr(model, 'module'): | |
state_dict = model.module.state_dict() | |
else: | |
state_dict = model.state_dict() | |
new_state_dict = {} | |
for k, v in state_dict.items(): | |
try: | |
new_state_dict[k] = saved_state_dict[k] | |
except: | |
print("%s is not in the checkpoint" % k) | |
new_state_dict[k] = v | |
if hasattr(model, 'module'): | |
model.module.load_state_dict(new_state_dict) | |
else: | |
model.load_state_dict(new_state_dict) | |
return model | |
def train(rank, args, chkpt_path, hp, hp_str): | |
if args.num_gpus > 1: | |
init_process_group(backend=hp.dist_config.dist_backend, init_method=hp.dist_config.dist_url, | |
world_size=hp.dist_config.world_size * args.num_gpus, rank=rank) | |
torch.cuda.manual_seed(hp.train.seed) | |
device = torch.device('cuda:{:d}'.format(rank)) | |
model_g = SynthesizerTrn( | |
hp.data.filter_length // 2 + 1, | |
hp.data.segment_size // hp.data.hop_length, | |
hp).to(device) | |
model_d = Discriminator(hp).to(device) | |
optim_g = torch.optim.AdamW(model_g.parameters(), | |
lr=hp.train.learning_rate, betas=hp.train.betas, eps=hp.train.eps) | |
optim_d = torch.optim.AdamW(model_d.parameters(), | |
lr=(hp.train.learning_rate / hp.train.accum_step), betas=hp.train.betas, eps=hp.train.eps) | |
init_epoch = 1 | |
step = 0 | |
stft = TacotronSTFT(filter_length=hp.data.filter_length, | |
hop_length=hp.data.hop_length, | |
win_length=hp.data.win_length, | |
n_mel_channels=hp.data.mel_channels, | |
sampling_rate=hp.data.sampling_rate, | |
mel_fmin=hp.data.mel_fmin, | |
mel_fmax=hp.data.mel_fmax, | |
center=False, | |
device=device) | |
# define logger, writer, valloader, stft at rank_zero | |
if rank == 0: | |
pth_dir = os.path.join(hp.log.pth_dir, args.name) | |
log_dir = os.path.join(hp.log.log_dir, args.name) | |
os.makedirs(pth_dir, exist_ok=True) | |
os.makedirs(log_dir, exist_ok=True) | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s', | |
handlers=[ | |
logging.FileHandler(os.path.join(log_dir, '%s-%d.log' % (args.name, time.time()))), | |
logging.StreamHandler() | |
] | |
) | |
logger = logging.getLogger() | |
writer = MyWriter(hp, log_dir) | |
valloader = create_dataloader_eval(hp) | |
if os.path.isfile(hp.train.pretrain): | |
if rank == 0: | |
logger.info("Start from 32k pretrain model: %s" % hp.train.pretrain) | |
checkpoint = torch.load(hp.train.pretrain, map_location='cpu') | |
load_model(model_g, checkpoint['model_g']) | |
load_model(model_d, checkpoint['model_d']) | |
if chkpt_path is not None: | |
if rank == 0: | |
logger.info("Resuming from checkpoint: %s" % chkpt_path) | |
checkpoint = torch.load(chkpt_path, map_location='cpu') | |
load_model(model_g, checkpoint['model_g']) | |
load_model(model_d, checkpoint['model_d']) | |
optim_g.load_state_dict(checkpoint['optim_g']) | |
optim_d.load_state_dict(checkpoint['optim_d']) | |
init_epoch = checkpoint['epoch'] | |
step = checkpoint['step'] | |
if rank == 0: | |
if hp_str != checkpoint['hp_str']: | |
logger.warning("New hparams is different from checkpoint. Will use new.") | |
else: | |
if rank == 0: | |
logger.info("Starting new training run.") | |
if args.num_gpus > 1: | |
model_g = DistributedDataParallel(model_g, device_ids=[rank]) | |
model_d = DistributedDataParallel(model_d, device_ids=[rank]) | |
# this accelerates training when the size of minibatch is always consistent. | |
# if not consistent, it'll horribly slow down. | |
torch.backends.cudnn.benchmark = True | |
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hp.train.lr_decay, last_epoch=init_epoch-2) | |
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hp.train.lr_decay, last_epoch=init_epoch-2) | |
stft_criterion = MultiResolutionSTFTLoss(device, eval(hp.mrd.resolutions)) | |
spkc_criterion = nn.CosineEmbeddingLoss() | |
trainloader = create_dataloader_train(hp, args.num_gpus, rank) | |
for epoch in range(init_epoch, hp.train.epochs): | |
trainloader.batch_sampler.set_epoch(epoch) | |
if rank == 0 and epoch % hp.log.eval_interval == 0: | |
with torch.no_grad(): | |
validate(hp, args, model_g, model_d, valloader, stft, writer, step, device) | |
if rank == 0: | |
loader = tqdm.tqdm(trainloader, desc='Loading train data') | |
else: | |
loader = trainloader | |
model_g.train() | |
model_d.train() | |
for ppg, ppg_l, vec, pit, spk, spec, spec_l, audio, audio_l in loader: | |
ppg = ppg.to(device) | |
vec = vec.to(device) | |
pit = pit.to(device) | |
spk = spk.to(device) | |
spec = spec.to(device) | |
audio = audio.to(device) | |
ppg_l = ppg_l.to(device) | |
spec_l = spec_l.to(device) | |
audio_l = audio_l.to(device) | |
# generator | |
fake_audio, ids_slice, z_mask, \ | |
(z_f, z_r, z_p, m_p, logs_p, z_q, m_q, logs_q, logdet_f, logdet_r), spk_preds = model_g( | |
ppg, vec, pit, spec, spk, ppg_l, spec_l) | |
audio = commons.slice_segments( | |
audio, ids_slice * hp.data.hop_length, hp.data.segment_size) # slice | |
# Spk Loss | |
spk_loss = spkc_criterion(spk, spk_preds, torch.Tensor(spk_preds.size(0)) | |
.to(device).fill_(1.0)) | |
# Mel Loss | |
mel_fake = stft.mel_spectrogram(fake_audio.squeeze(1)) | |
mel_real = stft.mel_spectrogram(audio.squeeze(1)) | |
mel_loss = F.l1_loss(mel_fake, mel_real) * hp.train.c_mel | |
# Multi-Resolution STFT Loss | |
sc_loss, mag_loss = stft_criterion(fake_audio.squeeze(1), audio.squeeze(1)) | |
stft_loss = (sc_loss + mag_loss) * hp.train.c_stft | |
# Generator Loss | |
disc_fake = model_d(fake_audio) | |
score_loss = 0.0 | |
for (_, score_fake) in disc_fake: | |
score_loss += torch.mean(torch.pow(score_fake - 1.0, 2)) | |
score_loss = score_loss / len(disc_fake) | |
# Feature Loss | |
disc_real = model_d(audio) | |
feat_loss = 0.0 | |
for (feat_fake, _), (feat_real, _) in zip(disc_fake, disc_real): | |
for fake, real in zip(feat_fake, feat_real): | |
feat_loss += torch.mean(torch.abs(fake - real)) | |
feat_loss = feat_loss / len(disc_fake) | |
feat_loss = feat_loss * 2 | |
# Kl Loss | |
loss_kl_f = kl_loss(z_f, logs_q, m_p, logs_p, logdet_f, z_mask) * hp.train.c_kl | |
loss_kl_r = kl_loss(z_r, logs_p, m_q, logs_q, logdet_r, z_mask) * hp.train.c_kl | |
# Loss | |
loss_g = score_loss + feat_loss + mel_loss + stft_loss + loss_kl_f + loss_kl_r * 0.5 + spk_loss * 2 | |
loss_g.backward() | |
if ((step + 1) % hp.train.accum_step == 0) or (step + 1 == len(loader)): | |
# accumulate gradients for accum steps | |
for param in model_g.parameters(): | |
param.grad /= hp.train.accum_step | |
clip_grad_value_(model_g.parameters(), None) | |
# update model | |
optim_g.step() | |
optim_g.zero_grad() | |
# discriminator | |
optim_d.zero_grad() | |
disc_fake = model_d(fake_audio.detach()) | |
disc_real = model_d(audio) | |
loss_d = 0.0 | |
for (_, score_fake), (_, score_real) in zip(disc_fake, disc_real): | |
loss_d += torch.mean(torch.pow(score_real - 1.0, 2)) | |
loss_d += torch.mean(torch.pow(score_fake, 2)) | |
loss_d = loss_d / len(disc_fake) | |
loss_d.backward() | |
clip_grad_value_(model_d.parameters(), None) | |
optim_d.step() | |
step += 1 | |
# logging | |
loss_g = loss_g.item() | |
loss_d = loss_d.item() | |
loss_s = stft_loss.item() | |
loss_m = mel_loss.item() | |
loss_k = loss_kl_f.item() | |
loss_r = loss_kl_r.item() | |
loss_i = spk_loss.item() | |
if rank == 0 and step % hp.log.info_interval == 0: | |
writer.log_training( | |
loss_g, loss_d, loss_m, loss_s, loss_k, loss_r, score_loss.item(), step) | |
logger.info("epoch %d | g %.04f m %.04f s %.04f d %.04f k %.04f r %.04f i %.04f | step %d" % ( | |
epoch, loss_g, loss_m, loss_s, loss_d, loss_k, loss_r, loss_i, step)) | |
if rank == 0 and epoch % hp.log.save_interval == 0: | |
save_path = os.path.join(pth_dir, '%s_%04d.pt' | |
% (args.name, epoch)) | |
torch.save({ | |
'model_g': (model_g.module if args.num_gpus > 1 else model_g).state_dict(), | |
'model_d': (model_d.module if args.num_gpus > 1 else model_d).state_dict(), | |
'optim_g': optim_g.state_dict(), | |
'optim_d': optim_d.state_dict(), | |
'step': step, | |
'epoch': epoch, | |
'hp_str': hp_str, | |
}, save_path) | |
logger.info("Saved checkpoint to: %s" % save_path) | |
if rank == 0: | |
def clean_checkpoints(path_to_models=f'{pth_dir}', n_ckpts_to_keep=hp.log.keep_ckpts, sort_by_time=True): | |
"""Freeing up space by deleting saved ckpts | |
Arguments: | |
path_to_models -- Path to the model directory | |
n_ckpts_to_keep -- Number of ckpts to keep, excluding sovits5.0_0.pth | |
If n_ckpts_to_keep == 0, do not delete any ckpts | |
sort_by_time -- True -> chronologically delete ckpts | |
False -> lexicographically delete ckpts | |
""" | |
assert isinstance(n_ckpts_to_keep, int) and n_ckpts_to_keep >= 0 | |
ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))] | |
name_key = (lambda _f: int(re.compile(f'{args.name}_(\d+)\.pt').match(_f).group(1))) | |
time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f))) | |
sort_key = time_key if sort_by_time else name_key | |
x_sorted = lambda _x: sorted( | |
[f for f in ckpts_files if f.startswith(_x) and not f.endswith('sovits5.0_0.pth')], key=sort_key) | |
if n_ckpts_to_keep == 0: | |
to_del = [] | |
else: | |
to_del = [os.path.join(path_to_models, fn) for fn in x_sorted(f'{args.name}')[:-n_ckpts_to_keep]] | |
del_info = lambda fn: logger.info(f"Free up space by deleting ckpt {fn}") | |
del_routine = lambda x: [os.remove(x), del_info(x)] | |
rs = [del_routine(fn) for fn in to_del] | |
clean_checkpoints() | |
os.makedirs(f'{pth_dir}', exist_ok=True) | |
keep_ckpts = getattr(hp.log, 'keep_ckpts', 0) | |
if keep_ckpts > 0: | |
clean_checkpoints(path_to_models=f'{pth_dir}', n_ckpts_to_keep=hp.log.keep_ckpts, sort_by_time=True) | |
scheduler_g.step() | |
scheduler_d.step() | |