Spaces:
Running
Running
import numpy as np | |
import torch | |
from torch import nn | |
from ..utils.io import load_fsspec | |
class LSTMWithProjection(nn.Module): | |
def __init__(self, input_size, hidden_size, proj_size): | |
super().__init__() | |
self.input_size = input_size | |
self.hidden_size = hidden_size | |
self.proj_size = proj_size | |
self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True) | |
self.linear = nn.Linear(hidden_size, proj_size, bias=False) | |
def forward(self, x): | |
self.lstm.flatten_parameters() | |
o, (_, _) = self.lstm(x) | |
return self.linear(o) | |
class LSTMWithoutProjection(nn.Module): | |
def __init__(self, input_dim, lstm_dim, proj_dim, num_lstm_layers): | |
super().__init__() | |
self.lstm = nn.LSTM(input_size=input_dim, hidden_size=lstm_dim, num_layers=num_lstm_layers, batch_first=True) | |
self.linear = nn.Linear(lstm_dim, proj_dim, bias=True) | |
self.relu = nn.ReLU() | |
def forward(self, x): | |
_, (hidden, _) = self.lstm(x) | |
return self.relu(self.linear(hidden[-1])) | |
class LSTMSpeakerEncoder(nn.Module): | |
def __init__(self, input_dim, proj_dim=256, lstm_dim=768, num_lstm_layers=3, use_lstm_with_projection=True): | |
super().__init__() | |
self.use_lstm_with_projection = use_lstm_with_projection | |
layers = [] | |
# choise LSTM layer | |
if use_lstm_with_projection: | |
layers.append(LSTMWithProjection(input_dim, lstm_dim, proj_dim)) | |
for _ in range(num_lstm_layers - 1): | |
layers.append(LSTMWithProjection(proj_dim, lstm_dim, proj_dim)) | |
self.layers = nn.Sequential(*layers) | |
else: | |
self.layers = LSTMWithoutProjection(input_dim, lstm_dim, proj_dim, num_lstm_layers) | |
self._init_layers() | |
def _init_layers(self): | |
for name, param in self.layers.named_parameters(): | |
if "bias" in name: | |
nn.init.constant_(param, 0.0) | |
elif "weight" in name: | |
nn.init.xavier_normal_(param) | |
def forward(self, x): | |
# TODO: implement state passing for lstms | |
d = self.layers(x) | |
if self.use_lstm_with_projection: | |
d = torch.nn.functional.normalize(d[:, -1], p=2, dim=1) | |
else: | |
d = torch.nn.functional.normalize(d, p=2, dim=1) | |
return d | |
def inference(self, x): | |
d = self.layers.forward(x) | |
if self.use_lstm_with_projection: | |
d = torch.nn.functional.normalize(d[:, -1], p=2, dim=1) | |
else: | |
d = torch.nn.functional.normalize(d, p=2, dim=1) | |
return d | |
def compute_embedding(self, x, num_frames=250, num_eval=10, return_mean=True): | |
""" | |
Generate embeddings for a batch of utterances | |
x: 1xTxD | |
""" | |
max_len = x.shape[1] | |
if max_len < num_frames: | |
num_frames = max_len | |
offsets = np.linspace(0, max_len - num_frames, num=num_eval) | |
frames_batch = [] | |
for offset in offsets: | |
offset = int(offset) | |
end_offset = int(offset + num_frames) | |
frames = x[:, offset:end_offset] | |
frames_batch.append(frames) | |
frames_batch = torch.cat(frames_batch, dim=0) | |
embeddings = self.inference(frames_batch) | |
if return_mean: | |
embeddings = torch.mean(embeddings, dim=0, keepdim=True) | |
return embeddings | |
def batch_compute_embedding(self, x, seq_lens, num_frames=160, overlap=0.5): | |
""" | |
Generate embeddings for a batch of utterances | |
x: BxTxD | |
""" | |
num_overlap = num_frames * overlap | |
max_len = x.shape[1] | |
embed = None | |
num_iters = seq_lens / (num_frames - num_overlap) | |
cur_iter = 0 | |
for offset in range(0, max_len, num_frames - num_overlap): | |
cur_iter += 1 | |
end_offset = min(x.shape[1], offset + num_frames) | |
frames = x[:, offset:end_offset] | |
if embed is None: | |
embed = self.inference(frames) | |
else: | |
embed[cur_iter <= num_iters, :] += self.inference(frames[cur_iter <= num_iters, :, :]) | |
return embed / num_iters | |
# pylint: disable=unused-argument, redefined-builtin | |
def load_checkpoint(self, checkpoint_path: str, eval: bool = False, use_cuda: bool = False): | |
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu")) | |
self.load_state_dict(state["model"]) | |
if use_cuda: | |
self.cuda() | |
if eval: | |
self.eval() | |
assert not self.training | |