Spaces:
Running
Running
| import sys,os | |
| sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
| import numpy as np | |
| import argparse | |
| import torch | |
| import librosa | |
| from tqdm import tqdm | |
| from hubert import hubert_model | |
| def load_audio(file: str, sr: int = 16000): | |
| x, sr = librosa.load(file, sr=sr) | |
| return x | |
| def load_model(path, device): | |
| model = hubert_model.hubert_soft(path) | |
| model.eval() | |
| model.half() | |
| model.to(device) | |
| return model | |
| def pred_vec(model, wavPath, vecPath, device): | |
| feats = load_audio(wavPath) | |
| feats = torch.from_numpy(feats).to(device) | |
| feats = feats[None, None, :].half() | |
| with torch.no_grad(): | |
| vec = model.units(feats).squeeze().data.cpu().float().numpy() | |
| # print(vec.shape) # [length, dim=256] hop=320 | |
| np.save(vecPath, vec, allow_pickle=False) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("-w", "--wav", help="wav", dest="wav", required=True) | |
| parser.add_argument("-v", "--vec", help="vec", dest="vec", required=True) | |
| args = parser.parse_args() | |
| print(args.wav) | |
| print(args.vec) | |
| os.makedirs(args.vec, exist_ok=True) | |
| wavPath = args.wav | |
| vecPath = args.vec | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| hubert = load_model(os.path.join("hubert_pretrain", "hubert-soft-0d54a1f4.pt"), device) | |
| for spks in os.listdir(wavPath): | |
| if os.path.isdir(f"./{wavPath}/{spks}"): | |
| os.makedirs(f"./{vecPath}/{spks}", exist_ok=True) | |
| files = [f for f in os.listdir(f"./{wavPath}/{spks}") if f.endswith(".wav")] | |
| for file in tqdm(files, desc=f'Processing vec {spks}'): | |
| file = file[:-4] | |
| pred_vec(hubert, f"{wavPath}/{spks}/{file}.wav", f"{vecPath}/{spks}/{file}.vec", device) | |