Spaces:
Runtime error
Runtime error
from tensorflow.keras.layers import Layer, InputSpec | |
import keras.utils.conv_utils as conv_utils | |
import tensorflow as tf | |
import tensorflow.keras.backend as K | |
def normalize_data_format(value): | |
if value is None: | |
value = K.image_data_format() | |
data_format = value.lower() | |
if data_format not in {'channels_first', 'channels_last'}: | |
raise ValueError('The `data_format` argument must be one of ' | |
'"channels_first", "channels_last". Received: ' + | |
str(value)) | |
return data_format | |
class BilinearUpSampling2D(Layer): | |
def __init__(self, size=(2, 2), data_format=None, **kwargs): | |
super(BilinearUpSampling2D, self).__init__(**kwargs) | |
self.data_format = normalize_data_format(data_format) | |
self.size = conv_utils.normalize_tuple(size, 2, 'size') | |
self.input_spec = InputSpec(ndim=4) | |
def compute_output_shape(self, input_shape): | |
if self.data_format == 'channels_first': | |
height = self.size[0] * input_shape[2] if input_shape[2] is not None else None | |
width = self.size[1] * input_shape[3] if input_shape[3] is not None else None | |
return (input_shape[0], | |
input_shape[1], | |
height, | |
width) | |
elif self.data_format == 'channels_last': | |
height = self.size[0] * input_shape[1] if input_shape[1] is not None else None | |
width = self.size[1] * input_shape[2] if input_shape[2] is not None else None | |
return (input_shape[0], | |
height, | |
width, | |
input_shape[3]) | |
def call(self, inputs): | |
input_shape = K.shape(inputs) | |
if self.data_format == 'channels_first': | |
height = self.size[0] * input_shape[2] if input_shape[2] is not None else None | |
width = self.size[1] * input_shape[3] if input_shape[3] is not None else None | |
elif self.data_format == 'channels_last': | |
height = self.size[0] * input_shape[1] if input_shape[1] is not None else None | |
width = self.size[1] * input_shape[2] if input_shape[2] is not None else None | |
return tf.image.resize(inputs, [height, width], method=tf.image.ResizeMethod.BILINEAR) | |
def get_config(self): | |
config = {'size': self.size, 'data_format': self.data_format} | |
base_config = super(BilinearUpSampling2D, self).get_config() | |
return dict(list(base_config.items()) + list(config.items())) |