Anyang Peng cyrusyc commited on
Commit
f1eddde
·
unverified ·
1 Parent(s): aa496c2

Feat: add DeepMD pretrain model (#12)

Browse files

* feat: add deepmd pretrain model

* separate model into different file in externals

* chore: add deepmd dependency

* skip hf model download for testing external fork

* change class name

* add HF HTTPError

* chore: downgrade deepmd to match pt version

* chore: try install deepmd from repo

* skip missing json on leaderboard; add installation instruction

* fix callout render

* fix readme path in pyproject.toml

---------

Co-authored-by: Yuan Chiang <cyrusyc@berkeley.edu>

.github/README.md CHANGED
@@ -12,6 +12,25 @@
12
 
13
  MLIP Arena is a platform for evaluating foundation machine learning interatomic potentials (MLIPs) beyond conventional energy and force error metrics. It focuses on revealing the underlying physics and chemistry learned by these models and assessing their performance in molecular dynamics (MD) simulations. The platform's benchmarks are specifically designed to evaluate the readiness and reliability of open-source, open-weight models in accurately reproducing both qualitative and quantitative behaviors of atomic systems.
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ## Contribute
16
 
17
  MLIP Arena is now in pre-alpha. If you're interested in joining the effort, please reach out to Yuan at [cyrusyc@berkeley.edu](mailto:cyrusyc@berkeley.edu). See [project page](https://github.com/orgs/atomind-ai/projects/1) for some outstanding tasks.
@@ -22,18 +41,25 @@ MLIP Arena is now in pre-alpha. If you're interested in joining the effort, plea
22
  streamlit run serve/app.py
23
  ```
24
 
25
- ### Add new benchmark tasks
 
 
 
 
 
 
 
26
 
27
  1. Follow the task template to implement the task class and upload the script along with metadata to the MLIP Arena [here](../mlip_arena/tasks/README.md).
28
  2. Code a benchmark script to evaluate the performance of your model on the task. The script should be able to load the model and the dataset, and output the evaluation metrics.
29
 
30
- ### Add new MLIP models
31
 
32
  If you have pretrained MLIP models that you would like to contribute to the MLIP Arena and show benchmark in real-time, there are two ways:
33
 
34
  #### External ASE Calculator (easy)
35
 
36
- 1. Implement new ASE Calculator class in [mlip_arena/models/external.py](../mlip_arena/models/externals.py).
37
  2. Name your class with awesome model name and add the same name to [registry](../mlip_arena/models/registry.yaml) with metadata.
38
 
39
  > [!CAUTION]
 
12
 
13
  MLIP Arena is a platform for evaluating foundation machine learning interatomic potentials (MLIPs) beyond conventional energy and force error metrics. It focuses on revealing the underlying physics and chemistry learned by these models and assessing their performance in molecular dynamics (MD) simulations. The platform's benchmarks are specifically designed to evaluate the readiness and reliability of open-source, open-weight models in accurately reproducing both qualitative and quantitative behaviors of atomic systems.
14
 
15
+ ## Installation
16
+
17
+ ### From PyPI (without model running capability)
18
+
19
+ ```bash
20
+ pip install mlip-arena
21
+ ```
22
+
23
+ ### From source
24
+
25
+ ```bash
26
+ git clone https://github.com/atomind-ai/mlip-arena.git
27
+ pip install torch==2.2.0
28
+ bash scripts/install-pyg.sh
29
+ bash scripts/install-dgl.sh
30
+ pip install .[test]
31
+ pip install .[mace]
32
+ ```
33
+
34
  ## Contribute
35
 
36
  MLIP Arena is now in pre-alpha. If you're interested in joining the effort, please reach out to Yuan at [cyrusyc@berkeley.edu](mailto:cyrusyc@berkeley.edu). See [project page](https://github.com/orgs/atomind-ai/projects/1) for some outstanding tasks.
 
41
  streamlit run serve/app.py
42
  ```
43
 
44
+ ### Add new benchmark tasks (WIP)
45
+
46
+ > [!NOTE]
47
+ > Please reuse or extend the general tasks defined as Prefect / Atomate2 workflow.
48
+ > The following are some tasks implemented:
49
+ > - [Prefect structure optimization (OPT)](../mlip_arena/tasks/optimize.py)
50
+ > - [Prefect molecular dynamics (MD)](../mlip_arena/tasks/md.py)
51
+ > - [Prefect equation of states (EOS)](../mlip_arena/tasks/eos/run.py)
52
 
53
  1. Follow the task template to implement the task class and upload the script along with metadata to the MLIP Arena [here](../mlip_arena/tasks/README.md).
54
  2. Code a benchmark script to evaluate the performance of your model on the task. The script should be able to load the model and the dataset, and output the evaluation metrics.
55
 
56
+ ### Add new MLIP models
57
 
58
  If you have pretrained MLIP models that you would like to contribute to the MLIP Arena and show benchmark in real-time, there are two ways:
59
 
60
  #### External ASE Calculator (easy)
61
 
62
+ 1. Implement new ASE Calculator class in [mlip_arena/models/externals](../mlip_arena/models/externals).
63
  2. Name your class with awesome model name and add the same name to [registry](../mlip_arena/models/registry.yaml) with metadata.
64
 
65
  > [!CAUTION]
.github/workflows/test.yaml CHANGED
@@ -28,14 +28,14 @@ jobs:
28
  pip install torch==2.2.0
29
  bash scripts/install-pyg.sh
30
  bash scripts/install-dgl.sh
31
- pip install .[mace]
32
  pip install .[test]
33
- pip install "pynanoflann@git+https://github.com/dwastberg/pynanoflann#egg=af434039ae14bedcbb838a7808924d6689274168"
34
 
35
  - name: List dependencies
36
  run: pip list
37
 
38
  - name: Login huggingface
 
39
  env:
40
  HF_TOKEN: ${{ secrets.HF_TOKEN_READ_ONLY }}
41
  run:
 
28
  pip install torch==2.2.0
29
  bash scripts/install-pyg.sh
30
  bash scripts/install-dgl.sh
 
31
  pip install .[test]
32
+ pip install .[mace]
33
 
34
  - name: List dependencies
35
  run: pip list
36
 
37
  - name: Login huggingface
38
+ if: ${{ github.event.pull_request.head.repo.full_name == github.repository }}
39
  env:
40
  HF_TOKEN: ${{ secrets.HF_TOKEN_READ_ONLY }}
41
  run:
mlip_arena/models/externals/deepmd.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from pathlib import Path
4
+
5
+ import yaml
6
+ import requests
7
+ from deepmd.calculator import DP as DPCalculator
8
+
9
+ from mlip_arena.models.utils import get_freer_device
10
+
11
+ with open(Path(__file__).parents[1] / "registry.yaml", encoding="utf-8") as f:
12
+ REGISTRY = yaml.safe_load(f)
13
+
14
+ class DeepMD(DPCalculator):
15
+ def __init__(
16
+ self,
17
+ checkpoint=REGISTRY["DeepMD"]["checkpoint"],
18
+ device=None,
19
+ **kwargs,
20
+ ):
21
+ device = device or get_freer_device()
22
+
23
+ cache_dir = Path.home() / ".cache" / "deepmd"
24
+ cache_dir.mkdir(parents=True, exist_ok=True)
25
+ model_path = cache_dir / checkpoint
26
+
27
+ url = "https://bohrium-api.dp.tech/ds-dl/mlip-arena-tfpk-v1.zip"
28
+
29
+ if not model_path.exists():
30
+ import zipfile
31
+
32
+ print(f"Downloading DeepMD model from {url} to {model_path}...")
33
+ try:
34
+ response = requests.get(url, stream=True, timeout=120)
35
+ response.raise_for_status()
36
+ with open(cache_dir/"temp.zip", "wb") as f:
37
+ for chunk in response.iter_content(chunk_size=8192):
38
+ f.write(chunk)
39
+ print("Download completed.")
40
+ with zipfile.ZipFile(cache_dir/"temp.zip", "r") as zip_ref:
41
+ zip_ref.extractall(cache_dir)
42
+ print("Unzip completed.")
43
+ except requests.exceptions.RequestException as e:
44
+ raise RuntimeError("Failed to download DeepMD model.") from e
45
+
46
+
47
+ super().__init__(model_path, device=device, **kwargs)
mlip_arena/models/registry.yaml CHANGED
@@ -245,4 +245,22 @@ ALIGNN:
245
  npt: true
246
  github: https://github.com/usnistgov/alignn
247
  doi: https://doi.org/10.1038/s41524-021-00650-1
248
- date: 2021-11-15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245
  npt: true
246
  github: https://github.com/usnistgov/alignn
247
  doi: https://doi.org/10.1038/s41524-021-00650-1
248
+ date: 2021-11-15
249
+
250
+ DeepMD:
251
+ module: externals
252
+ class: DeepMD
253
+ family: deepmd
254
+ package: deepmd-kit==v3.0.0b4
255
+ checkpoint: dp0808c_v024mixu.pth
256
+ username:
257
+ last-update: 2024-10-09T00:00:00
258
+ datetime: 2024-03-25T14:30:00 # TODO: Fake datetime
259
+ datasets:
260
+ - MPTrj # TODO: fake HF dataset repo
261
+ github: https://github.com/deepmodeling/deepmd-kit/
262
+ doi: https://arxiv.org/abs/2312.15492
263
+ date: 2024-10-09
264
+ prediction: EFS
265
+ nvt: true
266
+ npt: true
pyproject.toml CHANGED
@@ -3,13 +3,13 @@ requires=["flit_core >=3.2,<4"]
3
  build-backend="flit_core.buildapi"
4
 
5
  [project]
6
- name="mlip_arena"
7
  version="0.0.1a1"
8
  authors=[
9
  {name="Yuan Chiang", email="cyrusyc@lbl.gov"},
10
  ]
11
- description=""
12
- readme="README.md"
13
  requires-python=">=3.10"
14
  keywords=[
15
  "pytorch",
@@ -66,9 +66,11 @@ test = [
66
  "fairchem-core==1.2.0",
67
  "sevenn==0.9.3.post1",
68
  "orb-models==0.3.1",
 
69
  "alignn==2024.5.27",
70
  "pytest",
71
- "prefect>=3.0.4"
 
72
  ]
73
  mace = [
74
  "mace-torch==0.3.4",
 
3
  build-backend="flit_core.buildapi"
4
 
5
  [project]
6
+ name="mlip-arena"
7
  version="0.0.1a1"
8
  authors=[
9
  {name="Yuan Chiang", email="cyrusyc@lbl.gov"},
10
  ]
11
+ description="Fair and transparent benchmark of machine-learned interatomic potentials (MLIPs), beyond basic error metrics"
12
+ readme=".github/README.md"
13
  requires-python=">=3.10"
14
  keywords=[
15
  "pytorch",
 
66
  "fairchem-core==1.2.0",
67
  "sevenn==0.9.3.post1",
68
  "orb-models==0.3.1",
69
+ "pynanoflann@git+https://github.com/dwastberg/pynanoflann#egg=af434039ae14bedcbb838a7808924d6689274168",
70
  "alignn==2024.5.27",
71
  "pytest",
72
+ "prefect>=3.0.4",
73
+ "deepmd-kit@git+https://github.com/deepmodeling/deepmd-kit.git@v3.0.0b4"
74
  ]
75
  mace = [
76
  "mace-torch==0.3.4",
serve/leaderboard.py CHANGED
@@ -7,21 +7,21 @@ import streamlit as st
7
  from mlip_arena.models import REGISTRY as MODELS
8
  from mlip_arena.tasks import REGISTRY as TASKS
9
 
 
10
  DATA_DIR = Path("mlip_arena/tasks/diatomics")
11
 
12
- dfs = [
13
- pd.read_json(DATA_DIR / MODELS[model].get("family") / "homonuclear-diatomics.json")
14
- for model in MODELS
15
- ]
 
16
  df = pd.concat(dfs, ignore_index=True)
17
 
18
-
19
  table = pd.DataFrame(
20
  columns=[
21
  "Model",
22
  "Element Coverage",
23
- # "No. of reversed forces",
24
- # "Energy-consistent forces",
25
  "Prediction",
26
  "NVT",
27
  "NPT",
@@ -39,8 +39,6 @@ for model in MODELS:
39
  new_row = {
40
  "Model": model,
41
  "Element Coverage": len(rows["name"].unique()),
42
- # "No. of reversed forces": None, # Replace with actual logic if available
43
- # "Energy-consistent forces": None, # Replace with actual logic if available
44
  "Prediction": metadata.get("prediction", None),
45
  "NVT": "✅" if metadata.get("nvt", False) else "❌",
46
  "NPT": "✅" if metadata.get("npt", False) else "❌",
@@ -122,10 +120,12 @@ for task in TASKS:
122
  # if st.button(f"Go to task page"):
123
  # st.switch_page(f"tasks/{TASKS[task]['task-page']}.py")
124
  else:
125
- st.write("Rank metrics are not available yet but the task has been implemented. Please see the following task page for more information.")
126
-
 
 
127
  st.page_link(
128
  f"tasks/{TASKS[task]['task-page']}.py",
129
  label="Task page",
130
  icon=":material/link:",
131
- )
 
7
  from mlip_arena.models import REGISTRY as MODELS
8
  from mlip_arena.tasks import REGISTRY as TASKS
9
 
10
+ # Read the data
11
  DATA_DIR = Path("mlip_arena/tasks/diatomics")
12
 
13
+ dfs = []
14
+ for model in MODELS:
15
+ fpath = DATA_DIR / MODELS[model].get("family") / "homonuclear-diatomics.json"
16
+ if fpath.exists():
17
+ dfs.append(pd.read_json(fpath))
18
  df = pd.concat(dfs, ignore_index=True)
19
 
20
+ # Create a table
21
  table = pd.DataFrame(
22
  columns=[
23
  "Model",
24
  "Element Coverage",
 
 
25
  "Prediction",
26
  "NVT",
27
  "NPT",
 
39
  new_row = {
40
  "Model": model,
41
  "Element Coverage": len(rows["name"].unique()),
 
 
42
  "Prediction": metadata.get("prediction", None),
43
  "NVT": "✅" if metadata.get("nvt", False) else "❌",
44
  "NPT": "✅" if metadata.get("npt", False) else "❌",
 
120
  # if st.button(f"Go to task page"):
121
  # st.switch_page(f"tasks/{TASKS[task]['task-page']}.py")
122
  else:
123
+ st.write(
124
+ "Rank metrics are not available yet but the task has been implemented. Please see the following task page for more information."
125
+ )
126
+
127
  st.page_link(
128
  f"tasks/{TASKS[task]['task-page']}.py",
129
  label="Task page",
130
  icon=":material/link:",
131
+ )
tests/test_external_calculators.py CHANGED
@@ -3,6 +3,8 @@ from ase import Atoms
3
 
4
  from mlip_arena.models import MLIPEnum
5
 
 
 
6
 
7
  @pytest.mark.parametrize("model", MLIPEnum)
8
  def test_calculate(model: MLIPEnum):
@@ -10,7 +12,12 @@ def test_calculate(model: MLIPEnum):
10
  if model.name == "ALIGNN":
11
  pytest.xfail("ALIGNN has poor file download mechanism")
12
 
13
- calc = MLIPEnum[model.name].value()
 
 
 
 
 
14
 
15
  atoms = Atoms(
16
  "OO",
 
3
 
4
  from mlip_arena.models import MLIPEnum
5
 
6
+ from requests import HTTPError
7
+ from huggingface_hub.errors import LocalTokenNotFoundError
8
 
9
  @pytest.mark.parametrize("model", MLIPEnum)
10
  def test_calculate(model: MLIPEnum):
 
12
  if model.name == "ALIGNN":
13
  pytest.xfail("ALIGNN has poor file download mechanism")
14
 
15
+ try:
16
+ calc = MLIPEnum[model.name].value()
17
+
18
+ except (LocalTokenNotFoundError, HTTPError):
19
+ # Gracefully skip the test if HF_TOKEN is not available
20
+ pytest.skip("Skipping test because HF_TOKEN is not available for downloading the model.")
21
 
22
  atoms = Atoms(
23
  "OO",