cyrusyc commited on
Commit
c4ff088
·
1 Parent(s): bd9f7b0

update leaderbord, readme, longer traj

Browse files
Files changed (3) hide show
  1. .github/README.md +8 -1
  2. pyproject.toml +1 -1
  3. serve/leaderboard.py +7 -6
.github/README.md CHANGED
@@ -1,13 +1,14 @@
1
  <div align="center">
2
  <h1>MLIP Arena</h1>
3
  <a href="https://zenodo.org/doi/10.5281/zenodo.13704399"><img src="https://zenodo.org/badge/776930320.svg" alt="DOI"></a>
 
4
  </div>
5
 
6
  > [!CAUTION]
7
  > MLIP Arena is currently in pre-alpha. The results are not stable. Please intepret them with care.
8
 
9
  > [!NOTE]
10
- > If you're interested in joining the effort, please reach out to Yuan at [cyrusyc@berkeley.edu](mailto:cyrusyc@berkeley.edu). See [project page](https://github.com/orgs/atomind-ai/projects/1) for some outstanding tasks.
11
 
12
  MLIP Arena is an open-source platform for benchmarking machine learning interatomic potentials (MLIPs). The platform provides a unified interface for users to evaluate the performance of their models on a variety of tasks, including single-point density functional theory calculations and molecular dynamics simulations. The platform is designed to be extensible, allowing users to contribute new models, benchmarks, and training data to the platform.
13
 
@@ -15,6 +16,12 @@ MLIP Arena is an open-source platform for benchmarking machine learning interato
15
 
16
  MLIP Arena is now in pre-alpha. If you're interested in joining the effort, please reach out to Yuan at [cyrusyc@berkeley.edu](mailto:cyrusyc@berkeley.edu). See [project page](https://github.com/orgs/atomind-ai/projects/1) for some outstanding tasks.
17
 
 
 
 
 
 
 
18
  ### Add new MLIP models
19
 
20
  If you have pretrained MLIP models that you would like to contribute to the MLIP Arena and show benchmark in real-time, there are two ways:
 
1
  <div align="center">
2
  <h1>MLIP Arena</h1>
3
  <a href="https://zenodo.org/doi/10.5281/zenodo.13704399"><img src="https://zenodo.org/badge/776930320.svg" alt="DOI"></a>
4
+ <a href="https://huggingface.co/spaces/atomind/mlip-arena"><img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo-with-title.svg" style="height: 20px; background-color: white;" alt="Hugging Face"></a>
5
  </div>
6
 
7
  > [!CAUTION]
8
  > MLIP Arena is currently in pre-alpha. The results are not stable. Please intepret them with care.
9
 
10
  > [!NOTE]
11
+ > If you're interested in joining the effort, please reach out to Yuan at [cyrusyc@berkeley.edu](mailto:cyrusyc@berkeley.edu).
12
 
13
  MLIP Arena is an open-source platform for benchmarking machine learning interatomic potentials (MLIPs). The platform provides a unified interface for users to evaluate the performance of their models on a variety of tasks, including single-point density functional theory calculations and molecular dynamics simulations. The platform is designed to be extensible, allowing users to contribute new models, benchmarks, and training data to the platform.
14
 
 
16
 
17
  MLIP Arena is now in pre-alpha. If you're interested in joining the effort, please reach out to Yuan at [cyrusyc@berkeley.edu](mailto:cyrusyc@berkeley.edu). See [project page](https://github.com/orgs/atomind-ai/projects/1) for some outstanding tasks.
18
 
19
+ ### Development
20
+
21
+ ```
22
+ streamlit run serva/app.py
23
+ ```
24
+
25
  ### Add new MLIP models
26
 
27
  If you have pretrained MLIP models that you would like to contribute to the MLIP Arena and show benchmark in real-time, there are two ways:
pyproject.toml CHANGED
@@ -10,7 +10,7 @@ authors=[
10
  ]
11
  description=""
12
  readme="README.md"
13
- requires-python=">=3.8"
14
  keywords=[
15
  "pytorch",
16
  "machine-learning-interatomic-potentials",
 
10
  ]
11
  description=""
12
  readme="README.md"
13
+ requires-python=">=3.10"
14
  keywords=[
15
  "pytorch",
16
  "machine-learning-interatomic-potentials",
serve/leaderboard.py CHANGED
@@ -104,12 +104,13 @@ for task in TASKS:
104
  # Call the function from the imported module
105
  if hasattr(task_module, "render"):
106
  task_module.render()
107
- st.page_link(
108
- f"tasks/{TASKS[task]['task-page']}.py",
109
- label="Task page",
110
- icon=":material/link:",
111
- )
112
  # if st.button(f"Go to task page"):
113
  # st.switch_page(f"tasks/{TASKS[task]['task-page']}.py")
114
  else:
115
- st.write("Results for the task are not available yet.")
 
 
 
 
 
 
 
104
  # Call the function from the imported module
105
  if hasattr(task_module, "render"):
106
  task_module.render()
 
 
 
 
 
107
  # if st.button(f"Go to task page"):
108
  # st.switch_page(f"tasks/{TASKS[task]['task-page']}.py")
109
  else:
110
+ st.write("Rank metrics are not available yet but the task has been implemented. Please see the following task page for more information.")
111
+
112
+ st.page_link(
113
+ f"tasks/{TASKS[task]['task-page']}.py",
114
+ label="Task page",
115
+ icon=":material/link:",
116
+ )