cyrusyc commited on
Commit
9361457
·
1 Parent(s): 03db5cf

add warning pre-alpha message, add equiformer-oc20

Browse files
mlip_arena/tasks/diatomics/equiformer/homonuclear-diatomics.json CHANGED
The diff for this file is too large to render. See raw diff
 
serve/app.py CHANGED
@@ -1,7 +1,5 @@
1
  import streamlit as st
2
 
3
-
4
-
5
  # if "logged_in" not in st.session_state:
6
  # st.session_state.logged_in = False
7
 
@@ -19,7 +17,7 @@ import streamlit as st
19
  # logout_page = st.Page(logout, title="Log out", icon=":material/logout:")
20
 
21
  leaderboard = st.Page(
22
- "models/leaderboard.py", title="Leaderboard", icon=":material/trophy:"
23
  )
24
  # bugs = st.Page("models/bugs.py", title="Bug reports", icon=":material/bug_report:")
25
  # alerts = st.Page(
@@ -55,7 +53,7 @@ if pg in [stability, combustion]:
55
  page_icon=":shark:",
56
  initial_sidebar_state="expanded",
57
  menu_items={
58
- "About": 'https://github.com/atomind-ai/mlip-arena',
59
  "Report a bug": "https://github.com/atomind-ai/mlip-arena/issues/new",
60
  }
61
  )
@@ -66,9 +64,11 @@ else:
66
  page_icon=":shark:",
67
  initial_sidebar_state="expanded",
68
  menu_items={
69
- "About": 'https://github.com/atomind-ai/mlip-arena',
70
  "Report a bug": "https://github.com/atomind-ai/mlip-arena/issues/new",
71
  }
72
  )
73
 
74
- pg.run()
 
 
 
1
  import streamlit as st
2
 
 
 
3
  # if "logged_in" not in st.session_state:
4
  # st.session_state.logged_in = False
5
 
 
17
  # logout_page = st.Page(logout, title="Log out", icon=":material/logout:")
18
 
19
  leaderboard = st.Page(
20
+ "leaderboard.py", title="Leaderboard", icon=":material/trophy:"
21
  )
22
  # bugs = st.Page("models/bugs.py", title="Bug reports", icon=":material/bug_report:")
23
  # alerts = st.Page(
 
53
  page_icon=":shark:",
54
  initial_sidebar_state="expanded",
55
  menu_items={
56
+ "About": "https://github.com/atomind-ai/mlip-arena",
57
  "Report a bug": "https://github.com/atomind-ai/mlip-arena/issues/new",
58
  }
59
  )
 
64
  page_icon=":shark:",
65
  initial_sidebar_state="expanded",
66
  menu_items={
67
+ "About": "https://github.com/atomind-ai/mlip-arena",
68
  "Report a bug": "https://github.com/atomind-ai/mlip-arena/issues/new",
69
  }
70
  )
71
 
72
+ st.toast("MLIP Arena is currently in **pre-alpha**. The results are not stable. Please interpret them with care. Contributions are welcome. For more information, visit https://github.com/atomind-ai/mlip-arena.", icon="🍞")
73
+
74
+ pg.run()
serve/{models/leaderboard.py → leaderboard.py} RENAMED
@@ -50,14 +50,17 @@ s = table.style.background_gradient(
50
  vmin=0, vmax=120
51
  )
52
 
 
 
 
53
  st.markdown(
54
  """
55
  <h1 style='text-align: center;'>⚔️ MLIP Arena Leaderboard ⚔️</h1>
 
 
56
  """, unsafe_allow_html=True)
57
 
58
- # st.image("")
59
 
60
- # st.markdown("# MLIP Arena Leaderboard")
61
 
62
  st.dataframe(
63
  s,
 
50
  vmin=0, vmax=120
51
  )
52
 
53
+ st.warning("MLIP Arena is currently in **pre-alpha**. The results are not stable. Please interpret them with care.", icon="⚠️")
54
+ st.info("Contributions are welcome. For more information, visit https://github.com/atomind-ai/mlip-arena.", icon="🤗")
55
+
56
  st.markdown(
57
  """
58
  <h1 style='text-align: center;'>⚔️ MLIP Arena Leaderboard ⚔️</h1>
59
+
60
+ MLIP Arena is a platform for benchmarking foundation machine learning interatomic potentials (MLIPs).
61
  """, unsafe_allow_html=True)
62
 
 
63
 
 
64
 
65
  st.dataframe(
66
  s,
serve/tasks/homonuclear-diatomics.py CHANGED
@@ -12,7 +12,7 @@ from scipy.interpolate import CubicSpline
12
  from mlip_arena.models import REGISTRY
13
 
14
  st.markdown(
15
- """
16
  # Homonuclear Diatomics
17
 
18
  Homonuclear diatomics are molecules composed of two atoms of the same element.
@@ -22,8 +22,16 @@ The potential energy curves of homonuclear diatomics are the most fundamental in
22
 
23
  st.markdown("### Methods")
24
  container = st.container(border=True)
25
- valid_models = [model for model, metadata in REGISTRY.items() if Path(__file__).stem in metadata.get("gpu-tasks", [])]
26
- methods = container.multiselect("MLIPs", valid_models, ["EquiformerV2(OC22)", "eSCN(OC20)", "CHGNet", "M3GNet", "MACE-MP(M)"])
 
 
 
 
 
 
 
 
27
  dft_methods = container.multiselect("DFT Methods", ["GPAW"], [])
28
 
29
  st.markdown("### Settings")
@@ -34,38 +42,46 @@ ncols = vis.select_slider("Number of columns", options=[1, 2, 3, 4], value=2)
34
 
35
  # Get all attributes from pcolors.qualitative
36
  all_attributes = dir(pcolors.qualitative)
37
- color_palettes = {attr: getattr(pcolors.qualitative, attr) for attr in all_attributes if isinstance(getattr(pcolors.qualitative, attr), list)}
 
 
 
 
38
  color_palettes.pop("__all__", None)
39
 
40
  palette_names = list(color_palettes.keys())
41
  palette_colors = list(color_palettes.values())
42
 
43
- palette_name = vis.selectbox(
44
- "Color sequence",
45
- options=palette_names, index=22
46
- )
47
 
48
- color_sequence = color_palettes[palette_name] # type: ignore
49
 
50
  DATA_DIR = Path("mlip_arena/tasks/diatomics")
51
- if not methods:
52
  st.stop()
53
- dfs = [pd.read_json(DATA_DIR / REGISTRY[method]["family"] / "homonuclear-diatomics.json") for method in methods]
54
-
55
- dfs.extend([pd.read_json(DATA_DIR / method.lower() / "homonuclear-diatomics.json") for method in dft_methods])
56
-
57
-
58
 
 
 
 
 
 
 
 
 
 
 
59
  df = pd.concat(dfs, ignore_index=True)
60
  df.drop_duplicates(inplace=True, subset=["name", "method"])
61
 
62
- method_color_mapping = {method: color_sequence[i % len(color_sequence)] for i, method in enumerate(df["method"].unique())}
 
 
 
63
 
64
  # img_dir = Path('./images')
65
  # img_dir.mkdir(exist_ok=True)
66
 
67
  for i, symbol in enumerate(chemical_symbols[1:]):
68
-
69
  if i % ncols == 0:
70
  cols = st.columns(ncols)
71
 
@@ -79,6 +95,8 @@ for i, symbol in enumerate(chemical_symbols[1:]):
79
  elo, flo = float("inf"), float("inf")
80
 
81
  for j, method in enumerate(rows["method"].unique()):
 
 
82
  row = rows[rows["method"] == method].iloc[0]
83
 
84
  rs = np.array(row["R"])
@@ -101,7 +119,7 @@ for i, symbol in enumerate(chemical_symbols[1:]):
101
  fs = fs[ind]
102
 
103
  if "GPAW" in method:
104
- xs = np.linspace(rs.min()*0.99, rs.max()*1.01, int(5e2))
105
  else:
106
  xs = rs
107
 
@@ -112,11 +130,12 @@ for i, symbol in enumerate(chemical_symbols[1:]):
112
  else:
113
  ys = es
114
 
115
- elo = min(elo, max(ys.min()*1.2, -15), -1)
116
 
117
  fig.add_trace(
118
  go.Scatter(
119
- x=xs, y=ys,
 
120
  mode="lines",
121
  line=dict(
122
  color=method_color_mapping[method],
@@ -130,11 +149,12 @@ for i, symbol in enumerate(chemical_symbols[1:]):
130
  if force_plot and "GPAW" not in method:
131
  ys = fs
132
 
133
- flo = min(flo, max(ys.min()*1.2, -50))
134
 
135
  fig.add_trace(
136
  go.Scatter(
137
- x=xs, y=ys,
 
138
  mode="lines",
139
  line=dict(
140
  color=method_color_mapping[method],
@@ -160,22 +180,20 @@ for i, symbol in enumerate(chemical_symbols[1:]):
160
 
161
  # Set y-axes titles
162
  if energy_plot:
163
-
164
  fig.update_layout(
165
  yaxis=dict(
166
  title=dict(text="Energy [eV]"),
167
  side="left",
168
- range=[elo, 1.5*(abs(elo))],
169
  )
170
  )
171
 
172
  if force_plot:
173
-
174
  fig.update_layout(
175
  yaxis2=dict(
176
  title=dict(text="Force [eV/Å]"),
177
  side="right",
178
- range=[flo, 1.0*abs(flo)],
179
  overlaying="y",
180
  tickmode="sync",
181
  ),
 
12
  from mlip_arena.models import REGISTRY
13
 
14
  st.markdown(
15
+ """
16
  # Homonuclear Diatomics
17
 
18
  Homonuclear diatomics are molecules composed of two atoms of the same element.
 
22
 
23
  st.markdown("### Methods")
24
  container = st.container(border=True)
25
+ valid_models = [
26
+ model
27
+ for model, metadata in REGISTRY.items()
28
+ if Path(__file__).stem in metadata.get("gpu-tasks", [])
29
+ ]
30
+ mlip_methods = container.multiselect(
31
+ "MLIPs",
32
+ valid_models,
33
+ ["EquiformerV2(OC22)", "eSCN(OC20)", "CHGNet", "M3GNet", "MACE-MP(M)"],
34
+ )
35
  dft_methods = container.multiselect("DFT Methods", ["GPAW"], [])
36
 
37
  st.markdown("### Settings")
 
42
 
43
  # Get all attributes from pcolors.qualitative
44
  all_attributes = dir(pcolors.qualitative)
45
+ color_palettes = {
46
+ attr: getattr(pcolors.qualitative, attr)
47
+ for attr in all_attributes
48
+ if isinstance(getattr(pcolors.qualitative, attr), list)
49
+ }
50
  color_palettes.pop("__all__", None)
51
 
52
  palette_names = list(color_palettes.keys())
53
  palette_colors = list(color_palettes.values())
54
 
55
+ palette_name = vis.selectbox("Color sequence", options=palette_names, index=22)
 
 
 
56
 
57
+ color_sequence = color_palettes[palette_name] # type: ignore
58
 
59
  DATA_DIR = Path("mlip_arena/tasks/diatomics")
60
+ if not mlip_methods and not dft_methods:
61
  st.stop()
 
 
 
 
 
62
 
63
+ dfs = [
64
+ pd.read_json(DATA_DIR / REGISTRY[method]["family"] / "homonuclear-diatomics.json")
65
+ for method in mlip_methods
66
+ ]
67
+ dfs.extend(
68
+ [
69
+ pd.read_json(DATA_DIR / method.lower() / "homonuclear-diatomics.json")
70
+ for method in dft_methods
71
+ ]
72
+ )
73
  df = pd.concat(dfs, ignore_index=True)
74
  df.drop_duplicates(inplace=True, subset=["name", "method"])
75
 
76
+ method_color_mapping = {
77
+ method: color_sequence[i % len(color_sequence)]
78
+ for i, method in enumerate(df["method"].unique())
79
+ }
80
 
81
  # img_dir = Path('./images')
82
  # img_dir.mkdir(exist_ok=True)
83
 
84
  for i, symbol in enumerate(chemical_symbols[1:]):
 
85
  if i % ncols == 0:
86
  cols = st.columns(ncols)
87
 
 
95
  elo, flo = float("inf"), float("inf")
96
 
97
  for j, method in enumerate(rows["method"].unique()):
98
+ if method not in mlip_methods and method not in dft_methods:
99
+ continue
100
  row = rows[rows["method"] == method].iloc[0]
101
 
102
  rs = np.array(row["R"])
 
119
  fs = fs[ind]
120
 
121
  if "GPAW" in method:
122
+ xs = np.linspace(rs.min() * 0.99, rs.max() * 1.01, int(5e2))
123
  else:
124
  xs = rs
125
 
 
130
  else:
131
  ys = es
132
 
133
+ elo = min(elo, max(ys.min() * 1.2, -15), -1)
134
 
135
  fig.add_trace(
136
  go.Scatter(
137
+ x=xs,
138
+ y=ys,
139
  mode="lines",
140
  line=dict(
141
  color=method_color_mapping[method],
 
149
  if force_plot and "GPAW" not in method:
150
  ys = fs
151
 
152
+ flo = min(flo, max(ys.min() * 1.2, -50))
153
 
154
  fig.add_trace(
155
  go.Scatter(
156
+ x=xs,
157
+ y=ys,
158
  mode="lines",
159
  line=dict(
160
  color=method_color_mapping[method],
 
180
 
181
  # Set y-axes titles
182
  if energy_plot:
 
183
  fig.update_layout(
184
  yaxis=dict(
185
  title=dict(text="Energy [eV]"),
186
  side="left",
187
+ range=[elo, 1.5 * (abs(elo))],
188
  )
189
  )
190
 
191
  if force_plot:
 
192
  fig.update_layout(
193
  yaxis2=dict(
194
  title=dict(text="Force [eV/Å]"),
195
  side="right",
196
+ range=[flo, 1.0 * abs(flo)],
197
  overlaying="y",
198
  tickmode="sync",
199
  ),