Yuan (Cyrus) Chiang
Clean up `eos_alloy` (#36)
aadf5d0 unverified
"""
Generates a database of special quasi-random structures (SQS) from a template structure.
This script utilizes the `structuretoolkit <https://github.com/pyiron/structuretoolkit/tree/main>`_
to call `sqsgenerator <https://sqsgenerator.readthedocs.io/en/latest/index.html#>`_ to generate
SQS structures. The generated structures are saved to an ASE database file and optionally uploaded
to the Hugging Face Hub.
References
~~~~~~~~~~
- Alvi, S. M. A. A., Janssen, J., Khatamsaz, D., Perez, D., Allaire, D., & Arroyave, R. (2024).
Hierarchical Gaussian Process-Based Bayesian Optimization for Materials Discovery in High
Entropy Alloy Spaces. *arXiv preprint arXiv:2410.04314*.
- Gehringer, D., Friák, M., & Holec, D. (2023). Models of configurationally-complex alloys made
simple. *Computer Physics Communications, 286*, 108664.
Authors
~~~~~~~
- Jan Janssen (`@jan-janssen <https://github.com/jan-janssen>`_)
- Yuan Chiang (`@chiang-yuan <https://github.com/chiang-yuan>`_)
"""
import os
from pathlib import Path
from typing import Generator, Iterable
import numpy as np
from huggingface_hub import HfApi, hf_hub_download
from prefect import task
from tqdm.auto import tqdm
from ase import Atoms
from ase.db import connect
def save_to_db(
atoms_list: list[Atoms] | Iterable[Atoms] | Atoms,
db_path: Path | str,
upload: bool = True,
hf_token: str | None = os.getenv("HF_TOKEN", None),
repo_id: str = "atomind/mlip-arena",
repo_type: str = "dataset",
subfolder: str = Path(__file__).parent.name,
):
"""Save ASE Atoms objects to an ASE database and optionally upload to Hugging Face Hub."""
if upload and hf_token is None:
raise ValueError("HF_TOKEN is required to upload the database.")
db_path = Path(db_path)
if isinstance(atoms_list, Atoms):
atoms_list = [atoms_list]
with connect(db_path) as db:
for atoms in atoms_list:
if not isinstance(atoms, Atoms):
raise ValueError("atoms_list must contain ASE Atoms objects.")
db.write(atoms)
if upload:
api = HfApi(token=hf_token)
api.upload_file(
path_or_fileobj=db_path,
path_in_repo=f"{subfolder}/{db_path.name}",
repo_id=repo_id,
repo_type=repo_type,
)
print(f"{db_path.name} uploaded to {repo_id}/{subfolder}")
return db_path
@task
def get_atoms_from_db(
db_path: Path | str,
repo_id: str = "atomind/mlip-arena",
repo_type: str = "dataset",
subfolder: str = Path(__file__).parent.name,
) -> Generator[Atoms, None, None]:
"""Retrieve ASE Atoms objects from an ASE database."""
db_path = Path(db_path)
if not db_path.exists():
db_path = hf_hub_download(
repo_id=repo_id,
repo_type=repo_type,
subfolder=subfolder,
filename=str(db_path),
)
with connect(db_path) as db:
for row in db.select():
yield row.toatoms()
def body_order(n=32, b=5):
"""
Generate all possible combinations of atomic counts for `b` species
that sum to `n`.
"""
if b == 2:
return [[i, n - i] for i in range(n + 1)]
return [[i] + j for i in range(n + 1) for j in body_order(n=n - i, b=b - 1)]
def generate_sqs(structure_template, elements, counts):
"""
Generate a special quasi-random structure (SQS) based on mole fractions.
"""
import structuretoolkit as stk
mole_fractions = {
el: c / len(structure_template) for el, c in zip(elements, counts)
}
return stk.build.sqs_structures(
structure=structure_template,
mole_fractions=mole_fractions,
)[0]
def get_endmember(structure, conc_lst, elements):
"""
Assign a single element to all atoms in the structure to create an endmember.
"""
structure.symbols[:] = np.array(elements)[conc_lst != 0][0]
return structure
def generate_alloy_db(
structure_template: Atoms,
elements: list[str],
db_path: Path | str,
upload: bool = True,
hf_token: str | None = os.getenv("HF_TOKEN", None),
repo_id: str = "atomind/mlip-arena",
repo_type: str = "dataset",
) -> Path:
if upload and hf_token is None:
raise ValueError("HF_TOKEN is required to upload the database.")
num_atoms = len(structure_template)
num_species = len(elements)
# Generate all possible atomic configurations
configurations = np.array(body_order(n=num_atoms, b=num_species))
# Prepare the database
db_path = (
Path(db_path) or Path(__file__).resolve().parent / f"sqs_{'-'.join(elements)}.db"
)
db_path.unlink(missing_ok=True)
atoms_list = []
for i, composition in tqdm(
enumerate(configurations), total=len(configurations)
):
# Skip trivial cases where only one element is present
if sum(composition == 0) != len(elements) - 1:
atoms = generate_sqs(
structure_template=structure_template,
elements=np.array(elements)[composition != 0],
counts=composition[composition != 0],
)
else:
atoms = get_endmember(
structure=structure_template.copy(),
conc_lst=composition,
elements=elements,
)
atoms_list.append(atoms)
return save_to_db(
atoms_list=atoms_list,
db_path=db_path,
upload=upload,
hf_token=hf_token,
repo_id=repo_id,
repo_type=repo_type,
)