Yuan (Cyrus) Chiang
High-throughput EOS flow on alloy systems (#30)
1d1ee87 unverified
raw
history blame
4.23 kB
"""
Define structure optimization tasks.
"""
from __future__ import annotations
from prefect import task
from prefect.cache_policies import INPUTS, TASK_SOURCE
from prefect.runtime import task_run
from torch_dftd.torch_dftd3_calculator import TorchDFTD3Calculator
from ase import Atoms
from ase.calculators.calculator import Calculator
from ase.calculators.mixing import SumCalculator
from ase.constraints import FixSymmetry
from ase.filters import * # type: ignore
from ase.filters import Filter
from ase.optimize import * # type: ignore
from ase.optimize.optimize import Optimizer
from mlip_arena.models import MLIPEnum
from mlip_arena.models.utils import get_freer_device
_valid_filters: dict[str, Filter] = {
"Filter": Filter,
"UnitCell": UnitCellFilter,
"ExpCell": ExpCellFilter,
"Strain": StrainFilter,
"FrechetCell": FrechetCellFilter,
} # type: ignore
_valid_optimizers: dict[str, Optimizer] = {
"MDMin": MDMin,
"FIRE": FIRE,
"FIRE2": FIRE2,
"LBFGS": LBFGS,
"LBFGSLineSearch": LBFGSLineSearch,
"BFGS": BFGS,
"BFGSLineSearch": BFGSLineSearch,
"QuasiNewton": QuasiNewton,
"GPMin": GPMin,
"CellAwareBFGS": CellAwareBFGS,
"ODE12r": ODE12r,
} # type: ignore
def _generate_task_run_name():
task_name = task_run.task_name
parameters = task_run.parameters
atoms = parameters["atoms"]
calculator_name = parameters["calculator_name"]
return f"{task_name}: {atoms.get_chemical_formula()} - {calculator_name}"
@task(
name="OPT",
task_run_name=_generate_task_run_name,
cache_policy=TASK_SOURCE + INPUTS
# cache_key_fn=task_input_hash,
# cache_expiration=timedelta(days=1)
)
def run(
atoms: Atoms,
calculator_name: str | MLIPEnum,
calculator_kwargs: dict | None = None,
dispersion: str | None = None,
dispersion_kwargs: dict | None = None,
device: str | None = None,
optimizer: Optimizer | str = BFGSLineSearch,
optimizer_kwargs: dict | None = None,
filter: Filter | str | None = None,
filter_kwargs: dict | None = None,
criterion: dict | None = None,
symmetry: bool = False,
):
device = device or str(get_freer_device())
print(f"Using device: {device}")
calculator_kwargs = calculator_kwargs or {}
if isinstance(calculator_name, MLIPEnum) and calculator_name in MLIPEnum:
assert issubclass(calculator_name.value, Calculator)
calc = calculator_name.value(**calculator_kwargs)
elif (
isinstance(calculator_name, str) and calculator_name in MLIPEnum._member_names_
):
calc = MLIPEnum[calculator_name].value(**calculator_kwargs)
else:
raise ValueError(f"Invalid calculator: {calculator_name}")
print(f"Using calculator: {calc}")
dispersion_kwargs = dispersion_kwargs or {}
dispersion_kwargs.update({"device": device})
if dispersion is not None:
disp_calc = TorchDFTD3Calculator(
**dispersion_kwargs,
)
calc = SumCalculator([calc, disp_calc])
print(f"Using dispersion: {dispersion}")
atoms.calc = calc
if isinstance(filter, str):
if filter not in _valid_filters:
raise ValueError(f"Invalid filter: {filter}")
filter = _valid_filters[filter]
if isinstance(optimizer, str):
if optimizer not in _valid_optimizers:
raise ValueError(f"Invalid optimizer: {optimizer}")
optimizer = _valid_optimizers[optimizer]
filter_kwargs = filter_kwargs or {}
optimizer_kwargs = optimizer_kwargs or {}
criterion = criterion or {}
if symmetry:
atoms.set_constraint(FixSymmetry(atoms))
if isinstance(filter, type) and issubclass(filter, Filter):
filter_instance = filter(atoms, **filter_kwargs)
print(f"Using filter: {filter_instance}")
optimizer_instance = optimizer(atoms, **optimizer_kwargs)
print(f"Using optimizer: {optimizer_instance}")
optimizer_instance.run(**criterion)
elif filter is None:
optimizer_instance = optimizer(atoms, **optimizer_kwargs)
print(f"Using optimizer: {optimizer_instance}")
optimizer_instance.run(**criterion)
return {
"atoms": atoms,
}