Yuan (Cyrus) Chiang
Clean up `eos_alloy` (#36)
aadf5d0 unverified
raw
history blame
3.98 kB
from functools import partial
from pathlib import Path
import pandas as pd
from huggingface_hub import hf_hub_download
from prefect import Task, flow, task
from prefect.client.schemas.objects import TaskRun
from prefect.futures import wait
from prefect.states import State
from ase.db import connect
from mlip_arena.data.local import SafeHDFStore
from mlip_arena.models import REGISTRY, MLIPEnum
from mlip_arena.tasks.eos import run as EOS
@task
def get_atoms_from_db(db_path: Path | str):
db_path = Path(db_path)
if not db_path.exists():
db_path = hf_hub_download(
repo_id="atomind/mlip-arena",
repo_type="dataset",
subfolder=f"{Path(__file__).parent.name}",
filename=str(db_path),
)
with connect(db_path) as db:
for row in db.select():
yield row.toatoms()
def save_to_hdf(
tsk: Task, run: TaskRun, state: State, fpath: Path | str, table_name: str
):
"""
Define a hook on completion of EOS task to save results to HDF5 file.
"""
if run.state.is_failed():
return
result = run.state.result(raise_on_failure=False)
if not isinstance(result, dict):
return
try:
atoms = result["atoms"]
calculator_name = (
run.task_inputs["calculator_name"] or result["calculator_name"]
)
energies = [float(e) for e in result["eos"]["energies"]]
formula = atoms.get_chemical_formula()
df = pd.DataFrame(
{
"method": calculator_name,
"formula": formula,
"total_run_time": run.total_run_time,
"v0": result["v0"],
"e0": result["e0"],
"b0": result["b0"],
"b1": result["b1"],
"volume": result["eos"]["volumes"],
"energy": energies,
}
)
fpath = Path(fpath)
fpath = fpath.with_stem(fpath.stem + f"_{calculator_name}")
family_path = Path(__file__).parent / REGISTRY[calculator_name]["family"]
family_path.mkdir(parents=True, exist_ok=True)
df.to_json(family_path / f"{calculator_name}_{formula}.json", indent=2)
with SafeHDFStore(fpath, mode="a") as store:
store.append(
table_name,
df,
format="table",
data_columns=True,
min_itemsize={"formula": 50, "method": 20},
)
except Exception as e:
print(e)
@flow
def run_from_db(
db_path: Path | str,
out_path: Path | str,
table_name: str,
optimizer="FIRE",
optimizer_kwargs=None,
filter="FrechetCell",
filter_kwargs=None,
criterion=dict(fmax=0.1, steps=1000),
max_abs_strain=0.20,
concurrent=False,
):
EOS_ = EOS.with_options(
on_completion=[partial(save_to_hdf, fpath=out_path, table_name=table_name)]
)
futures = []
for atoms in get_atoms_from_db(db_path):
for mlip in MLIPEnum:
if not REGISTRY[mlip.name]["npt"]:
continue
if Path(__file__).parent.name not in (
REGISTRY[mlip.name].get("cpu-tasks", [])
+ REGISTRY[mlip.name].get("gpu-tasks", [])
):
continue
future = EOS_.submit(
atoms=atoms,
calculator_name=mlip.name,
calculator_kwargs=dict(),
optimizer=optimizer,
optimizer_kwargs=optimizer_kwargs,
filter=filter,
filter_kwargs=filter_kwargs,
criterion=criterion,
max_abs_strain=max_abs_strain,
concurrent=concurrent,
cache_opt=False,
)
futures.append(future)
wait(futures)
return [
f.result(timeout=None, raise_on_failure=False)
for f in futures
if f.state.is_completed()
]