Spaces:
Running
Running
from einops import rearrange | |
import numpy as np | |
import torch | |
from torch import Tensor | |
from roma import rotmat_to_rotvec, rotvec_to_rotmat | |
from torch.nn.functional import pad | |
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. | |
# Check PYTORCH3D_LICENCE before use | |
import functools | |
from typing import Optional | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
import torch | |
from einops import rearrange | |
def rotate_trajectory(traj, rotZ, inverse=False): | |
''' | |
Rotate the trajectory of a given body | |
''' | |
if inverse: | |
# transpose | |
rotZ = rearrange(rotZ, "... i j -> ... j i") | |
vel = torch.diff(traj, dim=-2) | |
# 0 for the first one => keep the dimentionality | |
vel = torch.cat((0 * vel[..., [0], :], vel), dim=-2) | |
vel_local = torch.einsum("...kj,...k->...j", rotZ[..., :2, :2], vel[..., :2]) | |
# Integrate the trajectory | |
traj_local = torch.cumsum(vel_local, dim=-2) | |
# First frame should be the same as before | |
traj_local = traj_local - traj_local[..., [0], :] + traj[..., [0], :] | |
return traj_local | |
def rotate_trans(trans, rotZ, inverse=False): | |
''' | |
Rotate the translation of a given body | |
''' | |
traj = trans[..., :2] | |
transZ = trans[..., 2] | |
traj_local = rotate_trajectory(traj, rotZ, inverse=inverse) | |
trans_local = torch.cat((traj_local, transZ[..., None]), axis=-1) | |
return trans_local | |
def rotate_body_degrees(rots, trans, offset=0.0): | |
""" | |
Rotate the whole body | |
""" | |
# rots, trans = data.rots.clone(), data.trans.clone() | |
global_poses = rots[..., 0, :, :] | |
global_euler = matrix_to_euler_angles(global_poses, "ZYX") | |
anglesZ, anglesY, anglesX = torch.unbind(global_euler, -1) | |
rotZ = _axis_angle_rotation("Z", anglesZ) | |
diff_mat_rotZ = rotZ[..., 1:, :, :] @ rotZ.transpose(-1, -2)[..., :-1, :, :] | |
vel_anglesZ = matrix_to_axis_angle(diff_mat_rotZ)[..., 2] | |
# padding "same" | |
vel_anglesZ = torch.cat((vel_anglesZ[..., [0]], vel_anglesZ), dim=-1) | |
# canonicalizing here | |
new_anglesZ = torch.cumsum(vel_anglesZ, -1) + offset | |
new_rotZ = _axis_angle_rotation("Z", new_anglesZ) | |
new_global_euler = torch.stack((new_anglesZ, anglesY, anglesX), -1) | |
new_global_orient = euler_angles_to_matrix(new_global_euler, "ZYX") | |
rots[:, 0] = new_global_orient | |
trans = rotate_trans(trans, rotZ[0], inverse=False) | |
trans = rotate_trans(trans, new_rotZ[0], inverse=True) | |
# trans = rotate_trans(trans, rotZ[0], inverse=True) | |
# from sinc.transforms.smpl import RotTransDatastruct | |
# return RotTransDatastruct(rots=rots, trans=trans) | |
return rots, trans | |
""" | |
The transformation matrices returned from the functions in this file assume | |
the points on which the transformation will be applied are column vectors. | |
i.e. the R matrix is structured as | |
R = [ | |
[Rxx, Rxy, Rxz], | |
[Ryx, Ryy, Ryz], | |
[Rzx, Rzy, Rzz], | |
] # (3, 3) | |
This matrix can be applied to column vectors by post multiplication | |
by the points e.g. | |
points = [[0], [1], [2]] # (3 x 1) xyz coordinates of a point | |
transformed_points = R * points | |
To apply the same matrix to points which are row vectors, the R matrix | |
can be transposed and pre multiplied by the points: | |
e.g. | |
points = [[0, 1, 2]] # (1 x 3) xyz coordinates of a point | |
transformed_points = points * R.transpose(1, 0) | |
""" | |
# Added | |
def matrix_of_angles(cos, sin, inv=False, dim=2): | |
assert dim in [2, 3] | |
sin = -sin if inv else sin | |
if dim == 2: | |
row1 = torch.stack((cos, -sin), axis=-1) | |
row2 = torch.stack((sin, cos), axis=-1) | |
return torch.stack((row1, row2), axis=-2) | |
elif dim == 3: | |
row1 = torch.stack((cos, -sin, 0*cos), axis=-1) | |
row2 = torch.stack((sin, cos, 0*cos), axis=-1) | |
row3 = torch.stack((0*sin, 0*cos, 1+0*cos), axis=-1) | |
return torch.stack((row1, row2, row3),axis=-2) | |
def quaternion_to_matrix(quaternions): | |
""" | |
Convert rotations given as quaternions to rotation matrices. | |
Args: | |
quaternions: quaternions with real part first, | |
as tensor of shape (..., 4). | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
r, i, j, k = torch.unbind(quaternions, -1) | |
two_s = 2.0 / (quaternions * quaternions).sum(-1) | |
o = torch.stack( | |
( | |
1 - two_s * (j * j + k * k), | |
two_s * (i * j - k * r), | |
two_s * (i * k + j * r), | |
two_s * (i * j + k * r), | |
1 - two_s * (i * i + k * k), | |
two_s * (j * k - i * r), | |
two_s * (i * k - j * r), | |
two_s * (j * k + i * r), | |
1 - two_s * (i * i + j * j), | |
), | |
-1, | |
) | |
return o.reshape(quaternions.shape[:-1] + (3, 3)) | |
def _copysign(a, b): | |
""" | |
Return a tensor where each element has the absolute value taken from the, | |
corresponding element of a, with sign taken from the corresponding | |
element of b. This is like the standard copysign floating-point operation, | |
but is not careful about negative 0 and NaN. | |
Args: | |
a: source tensor. | |
b: tensor whose signs will be used, of the same shape as a. | |
Returns: | |
Tensor of the same shape as a with the signs of b. | |
""" | |
signs_differ = (a < 0) != (b < 0) | |
return torch.where(signs_differ, -a, a) | |
def _sqrt_positive_part(x): | |
""" | |
Returns torch.sqrt(torch.max(0, x)) | |
but with a zero subgradient where x is 0. | |
""" | |
ret = torch.zeros_like(x) | |
positive_mask = x > 0 | |
ret[positive_mask] = torch.sqrt(x[positive_mask]) | |
return ret | |
def matrix_to_quaternion(matrix): | |
""" | |
Convert rotations given as rotation matrices to quaternions. | |
Args: | |
matrix: Rotation matrices as tensor of shape (..., 3, 3). | |
Returns: | |
quaternions with real part first, as tensor of shape (..., 4). | |
""" | |
if isinstance(matrix, np.ndarray): | |
matrix = torch.from_numpy(matrix) | |
if matrix.shape[-1] != 3 or matrix.shape[-2] != 3: | |
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.") | |
m00 = matrix[..., 0, 0] | |
m11 = matrix[..., 1, 1] | |
m22 = matrix[..., 2, 2] | |
o0 = 0.5 * _sqrt_positive_part(1 + m00 + m11 + m22) | |
x = 0.5 * _sqrt_positive_part(1 + m00 - m11 - m22) | |
y = 0.5 * _sqrt_positive_part(1 - m00 + m11 - m22) | |
z = 0.5 * _sqrt_positive_part(1 - m00 - m11 + m22) | |
o1 = _copysign(x, matrix[..., 2, 1] - matrix[..., 1, 2]) | |
o2 = _copysign(y, matrix[..., 0, 2] - matrix[..., 2, 0]) | |
o3 = _copysign(z, matrix[..., 1, 0] - matrix[..., 0, 1]) | |
return torch.stack((o0, o1, o2, o3), -1) | |
def _axis_angle_rotation(axis: str, angle): | |
""" | |
Return the rotation matrices for one of the rotations about an axis | |
of which Euler angles describe, for each value of the angle given. | |
Args: | |
axis: Axis label "X" or "Y or "Z". | |
angle: any shape tensor of Euler angles in radians | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
cos = torch.cos(angle) | |
sin = torch.sin(angle) | |
one = torch.ones_like(angle) | |
zero = torch.zeros_like(angle) | |
if axis == "X": | |
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos) | |
if axis == "Y": | |
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos) | |
if axis == "Z": | |
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one) | |
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3)) | |
def euler_angles_to_matrix(euler_angles, convention: str): | |
""" | |
Convert rotations given as Euler angles in radians to rotation matrices. | |
Args: | |
euler_angles: Euler angles in radians as tensor of shape (..., 3). | |
convention: Convention string of three uppercase letters from | |
{"X", "Y", and "Z"}. | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3: | |
raise ValueError("Invalid input euler angles.") | |
if len(convention) != 3: | |
raise ValueError("Convention must have 3 letters.") | |
if convention[1] in (convention[0], convention[2]): | |
raise ValueError(f"Invalid convention {convention}.") | |
for letter in convention: | |
if letter not in ("X", "Y", "Z"): | |
raise ValueError(f"Invalid letter {letter} in convention string.") | |
matrices = map(_axis_angle_rotation, convention, torch.unbind(euler_angles, -1)) | |
return functools.reduce(torch.matmul, matrices) | |
def _angle_from_tan( | |
axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool | |
): | |
""" | |
Extract the first or third Euler angle from the two members of | |
the matrix which are positive constant times its sine and cosine. | |
Args: | |
axis: Axis label "X" or "Y or "Z" for the angle we are finding. | |
other_axis: Axis label "X" or "Y or "Z" for the middle axis in the | |
convention. | |
data: Rotation matrices as tensor of shape (..., 3, 3). | |
horizontal: Whether we are looking for the angle for the third axis, | |
which means the relevant entries are in the same row of the | |
rotation matrix. If not, they are in the same column. | |
tait_bryan: Whether the first and third axes in the convention differ. | |
Returns: | |
Euler Angles in radians for each matrix in data as a tensor | |
of shape (...). | |
""" | |
i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis] | |
if horizontal: | |
i2, i1 = i1, i2 | |
even = (axis + other_axis) in ["XY", "YZ", "ZX"] | |
if horizontal == even: | |
return torch.atan2(data[..., i1], data[..., i2]) | |
if tait_bryan: | |
return torch.atan2(-data[..., i2], data[..., i1]) | |
return torch.atan2(data[..., i2], -data[..., i1]) | |
def _index_from_letter(letter: str): | |
if letter == "X": | |
return 0 | |
if letter == "Y": | |
return 1 | |
if letter == "Z": | |
return 2 | |
def matrix_to_euler_angles(matrix, convention: str): | |
""" | |
Convert rotations given as rotation matrices to Euler angles in radians. | |
Args: | |
matrix: Rotation matrices as tensor of shape (..., 3, 3). | |
convention: Convention string of three uppercase letters. | |
Returns: | |
Euler angles in radians as tensor of shape (..., 3). | |
""" | |
if len(convention) != 3: | |
raise ValueError("Convention must have 3 letters.") | |
if convention[1] in (convention[0], convention[2]): | |
raise ValueError(f"Invalid convention {convention}.") | |
for letter in convention: | |
if letter not in ("X", "Y", "Z"): | |
raise ValueError(f"Invalid letter {letter} in convention string.") | |
if matrix.shape[-1] != 3 or matrix.shape[-2] != 3: | |
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.") | |
i0 = _index_from_letter(convention[0]) | |
i2 = _index_from_letter(convention[2]) | |
tait_bryan = i0 != i2 | |
if tait_bryan: | |
central_angle = torch.asin( | |
matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0) | |
) | |
else: | |
central_angle = torch.acos(matrix[..., i0, i0]) | |
o = ( | |
_angle_from_tan( | |
convention[0], convention[1], matrix[..., i2], False, tait_bryan | |
), | |
central_angle, | |
_angle_from_tan( | |
convention[2], convention[1], matrix[..., i0, :], True, tait_bryan | |
), | |
) | |
return torch.stack(o, -1) | |
def random_quaternions( | |
n: int, dtype: Optional[torch.dtype] = None, device=None, requires_grad=False | |
): | |
""" | |
Generate random quaternions representing rotations, | |
i.e. versors with nonnegative real part. | |
Args: | |
n: Number of quaternions in a batch to return. | |
dtype: Type to return. | |
device: Desired device of returned tensor. Default: | |
uses the current device for the default tensor type. | |
requires_grad: Whether the resulting tensor should have the gradient | |
flag set. | |
Returns: | |
Quaternions as tensor of shape (N, 4). | |
""" | |
o = torch.randn((n, 4), dtype=dtype, device=device, requires_grad=requires_grad) | |
s = (o * o).sum(1) | |
o = o / _copysign(torch.sqrt(s), o[:, 0])[:, None] | |
return o | |
def random_rotations( | |
n: int, dtype: Optional[torch.dtype] = None, device=None, requires_grad=False | |
): | |
""" | |
Generate random rotations as 3x3 rotation matrices. | |
Args: | |
n: Number of rotation matrices in a batch to return. | |
dtype: Type to return. | |
device: Device of returned tensor. Default: if None, | |
uses the current device for the default tensor type. | |
requires_grad: Whether the resulting tensor should have the gradient | |
flag set. | |
Returns: | |
Rotation matrices as tensor of shape (n, 3, 3). | |
""" | |
quaternions = random_quaternions( | |
n, dtype=dtype, device=device, requires_grad=requires_grad | |
) | |
return quaternion_to_matrix(quaternions) | |
def random_rotation( | |
dtype: Optional[torch.dtype] = None, device=None, requires_grad=False | |
): | |
""" | |
Generate a single random 3x3 rotation matrix. | |
Args: | |
dtype: Type to return | |
device: Device of returned tensor. Default: if None, | |
uses the current device for the default tensor type | |
requires_grad: Whether the resulting tensor should have the gradient | |
flag set | |
Returns: | |
Rotation matrix as tensor of shape (3, 3). | |
""" | |
return random_rotations(1, dtype, device, requires_grad)[0] | |
def standardize_quaternion(quaternions): | |
""" | |
Convert a unit quaternion to a standard form: one in which the real | |
part is non negative. | |
Args: | |
quaternions: Quaternions with real part first, | |
as tensor of shape (..., 4). | |
Returns: | |
Standardized quaternions as tensor of shape (..., 4). | |
""" | |
return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions) | |
def quaternion_raw_multiply(a, b): | |
""" | |
Multiply two quaternions. | |
Usual torch rules for broadcasting apply. | |
Args: | |
a: Quaternions as tensor of shape (..., 4), real part first. | |
b: Quaternions as tensor of shape (..., 4), real part first. | |
Returns: | |
The product of a and b, a tensor of quaternions shape (..., 4). | |
""" | |
aw, ax, ay, az = torch.unbind(a, -1) | |
bw, bx, by, bz = torch.unbind(b, -1) | |
ow = aw * bw - ax * bx - ay * by - az * bz | |
ox = aw * bx + ax * bw + ay * bz - az * by | |
oy = aw * by - ax * bz + ay * bw + az * bx | |
oz = aw * bz + ax * by - ay * bx + az * bw | |
return torch.stack((ow, ox, oy, oz), -1) | |
def quaternion_multiply(a, b): | |
""" | |
Multiply two quaternions representing rotations, returning the quaternion | |
representing their composition, i.e. the versor with nonnegative real part. | |
Usual torch rules for broadcasting apply. | |
Args: | |
a: Quaternions as tensor of shape (..., 4), real part first. | |
b: Quaternions as tensor of shape (..., 4), real part first. | |
Returns: | |
The product of a and b, a tensor of quaternions of shape (..., 4). | |
""" | |
ab = quaternion_raw_multiply(a, b) | |
return standardize_quaternion(ab) | |
def quaternion_invert(quaternion): | |
""" | |
Given a quaternion representing rotation, get the quaternion representing | |
its inverse. | |
Args: | |
quaternion: Quaternions as tensor of shape (..., 4), with real part | |
first, which must be versors (unit quaternions). | |
Returns: | |
The inverse, a tensor of quaternions of shape (..., 4). | |
""" | |
return quaternion * quaternion.new_tensor([1, -1, -1, -1]) | |
def quaternion_apply(quaternion, point): | |
""" | |
Apply the rotation given by a quaternion to a 3D point. | |
Usual torch rules for broadcasting apply. | |
Args: | |
quaternion: Tensor of quaternions, real part first, of shape (..., 4). | |
point: Tensor of 3D points of shape (..., 3). | |
Returns: | |
Tensor of rotated points of shape (..., 3). | |
""" | |
if point.shape[-1] != 3: | |
raise ValueError(f"Points are not in 3D, f{point.shape}.") | |
real_parts = point.new_zeros(point.shape[:-1] + (1,)) | |
point_as_quaternion = torch.cat((real_parts, point), -1) | |
out = quaternion_raw_multiply( | |
quaternion_raw_multiply(quaternion, point_as_quaternion), | |
quaternion_invert(quaternion), | |
) | |
return out[..., 1:] | |
def axis_angle_to_matrix(axis_angle): | |
""" | |
Convert rotations given as axis/angle to rotation matrices. | |
Args: | |
axis_angle: Rotations given as a vector in axis angle form, | |
as a tensor of shape (..., 3), where the magnitude is | |
the angle turned anticlockwise in radians around the | |
vector's direction. | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) | |
def matrix_to_axis_angle(matrix): | |
""" | |
Convert rotations given as rotation matrices to axis/angle. | |
Args: | |
matrix: Rotation matrices as tensor of shape (..., 3, 3). | |
Returns: | |
Rotations given as a vector in axis angle form, as a tensor | |
of shape (..., 3), where the magnitude is the angle | |
turned anticlockwise in radians around the vector's | |
direction. | |
""" | |
return quaternion_to_axis_angle(matrix_to_quaternion(matrix)) | |
def axis_angle_to_quaternion(axis_angle): | |
""" | |
Convert rotations given as axis/angle to quaternions. | |
Args: | |
axis_angle: Rotations given as a vector in axis angle form, | |
as a tensor of shape (..., 3), where the magnitude is | |
the angle turned anticlockwise in radians around the | |
vector's direction. | |
Returns: | |
quaternions with real part first, as tensor of shape (..., 4). | |
""" | |
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) | |
half_angles = 0.5 * angles | |
eps = 1e-6 | |
small_angles = angles.abs() < eps | |
sin_half_angles_over_angles = torch.empty_like(angles) | |
try: | |
sin_half_angles_over_angles[~small_angles] = ( | |
torch.sin(half_angles[~small_angles]) / angles[~small_angles] | |
) | |
except: | |
torch.save(axis_angle, f'before_convert_axis_angle.pt') | |
# for x small, sin(x/2) is about x/2 - (x/2)^3/6 | |
# so sin(x/2)/x is about 1/2 - (x*x)/48 | |
sin_half_angles_over_angles[small_angles] = ( | |
0.5 - (angles[small_angles] * angles[small_angles]) / 48 | |
) | |
quaternions = torch.cat( | |
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 | |
) | |
return quaternions | |
def quaternion_to_axis_angle(quaternions): | |
""" | |
Convert rotations given as quaternions to axis/angle. | |
Args: | |
quaternions: quaternions with real part first, | |
as tensor of shape (..., 4). | |
Returns: | |
Rotations given as a vector in axis angle form, as a tensor | |
of shape (..., 3), where the magnitude is the angle | |
turned anticlockwise in radians around the vector's | |
direction. | |
""" | |
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True) | |
half_angles = torch.atan2(norms, quaternions[..., :1]) | |
angles = 2 * half_angles | |
eps = 1e-6 | |
small_angles = angles.abs() < eps | |
sin_half_angles_over_angles = torch.empty_like(angles) | |
sin_half_angles_over_angles[~small_angles] = ( | |
torch.sin(half_angles[~small_angles]) / angles[~small_angles] | |
) | |
# for x small, sin(x/2) is about x/2 - (x/2)^3/6 | |
# so sin(x/2)/x is about 1/2 - (x*x)/48 | |
sin_half_angles_over_angles[small_angles] = ( | |
0.5 - (angles[small_angles] * angles[small_angles]) / 48 | |
) | |
return quaternions[..., 1:] / sin_half_angles_over_angles | |
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor: | |
""" | |
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix | |
using Gram--Schmidt orthogonalisation per Section B of [1]. | |
Args: | |
d6: 6D rotation representation, of size (*, 6) | |
Returns: | |
batch of rotation matrices of size (*, 3, 3) | |
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. | |
On the Continuity of Rotation Representations in Neural Networks. | |
IEEE Conference on Computer Vision and Pattern Recognition, 2019. | |
Retrieved from http://arxiv.org/abs/1812.07035 | |
""" | |
a1, a2 = d6[..., :3], d6[..., 3:] | |
b1 = F.normalize(a1, dim=-1) | |
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1 | |
b2 = F.normalize(b2, dim=-1) | |
b3 = torch.cross(b1, b2, dim=-1) | |
return torch.stack((b1, b2, b3), dim=-2) | |
def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor: | |
""" | |
Converts rotation matrices to 6D rotation representation by Zhou et al. [1] | |
by dropping the last row. Note that 6D representation is not unique. | |
Args: | |
matrix: batch of rotation matrices of size (*, 3, 3) | |
Returns: | |
6D rotation representation, of size (*, 6) | |
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. | |
On the Continuity of Rotation Representations in Neural Networks. | |
IEEE Conference on Computer Vision and Pattern Recognition, 2019. | |
Retrieved from http://arxiv.org/abs/1812.07035 | |
""" | |
return matrix[..., :2, :].clone().reshape(*matrix.shape[:-2], 6) | |
def rotate_trajectory(traj, rotZ, inverse=False): | |
if inverse: | |
# transpose | |
rotZ = rearrange(rotZ, "... i j -> ... j i") | |
vel = torch.diff(traj, dim=-2) | |
# 0 for the first one => keep the dimentionality | |
vel = torch.cat((0 * vel[..., [0], :], vel), dim=-2) | |
vel_local = torch.einsum("...kj,...k->...j", rotZ[..., :2, :2], vel[..., :2]) | |
# Integrate the trajectory | |
traj_local = torch.cumsum(vel_local, dim=-2) | |
# First frame should be the same as before | |
traj_local = traj_local - traj_local[..., [0], :] + traj[..., [0], :] | |
return traj_local | |
def rotate_trans(trans, rotZ, inverse=False): | |
traj = trans[..., :2] | |
transZ = trans[..., 2] | |
traj_local = rotate_trajectory(traj, rotZ, inverse=inverse) | |
trans_local = torch.cat((traj_local, transZ[..., None]), axis=-1) | |
return trans_local | |
def canonicalize_rotations(global_orient, trans, angle=torch.pi/4): | |
global_euler = matrix_to_euler_angles(global_orient, "ZYX") | |
anglesZ, anglesY, anglesX = torch.unbind(global_euler, -1) | |
rotZ = _axis_angle_rotation("Z", anglesZ) | |
# remove the current rotation | |
# make it local | |
local_trans = rotate_trans(trans, rotZ) | |
# For information: | |
# rotate_joints(joints, rotZ) == joints_local | |
diff_mat_rotZ = rotZ[..., 1:, :, :] @ rotZ.transpose(-1, -2)[..., :-1, :, :] | |
vel_anglesZ = matrix_to_axis_angle(diff_mat_rotZ)[..., 2] | |
# padding "same" | |
vel_anglesZ = torch.cat((vel_anglesZ[..., [0]], vel_anglesZ), dim=-1) | |
# Compute new rotation: | |
# canonicalized | |
anglesZ = torch.cumsum(vel_anglesZ, -1) | |
anglesZ += angle | |
rotZ = _axis_angle_rotation("Z", anglesZ) | |
new_trans = rotate_trans(local_trans, rotZ, inverse=True) | |
new_global_euler = torch.stack((anglesZ, anglesY, anglesX), -1) | |
new_global_orient = euler_angles_to_matrix(new_global_euler, "ZYX") | |
return new_global_orient, new_trans | |
def rotate_motion_canonical(rotations, translation, transl_zero=True): | |
""" | |
Must be of shape S x (Jx3) | |
""" | |
rots_motion = rotations | |
trans_motion = translation | |
datum_len = rotations.shape[0] | |
rots_motion_rotmat = transform_body_pose(rots_motion.reshape(datum_len, | |
-1, 3), | |
'aa->rot') | |
orient_R_can, trans_can = canonicalize_rotations(rots_motion_rotmat[:, | |
0], | |
trans_motion) | |
rots_motion_rotmat_can = rots_motion_rotmat | |
rots_motion_rotmat_can[:, 0] = orient_R_can | |
rots_motion_aa_can = transform_body_pose(rots_motion_rotmat_can, | |
'rot->aa') | |
rots_motion_aa_can = rearrange(rots_motion_aa_can, 'F J d -> F (J d)', | |
d=3) | |
if transl_zero: | |
translation_can = trans_can - trans_can[0] | |
else: | |
translation_can = trans_can | |
return rots_motion_aa_can, translation_can | |
def transform_body_pose(pose, formats): | |
""" | |
various angle transformations, transforms input to torch.Tensor | |
input: | |
- pose: pose tensor | |
- formats: string denoting the input-output angle format | |
""" | |
if isinstance(pose, np.ndarray): | |
pose = torch.from_numpy(pose) | |
if formats == "6d->aa": | |
j = pose.shape[-1] / 6 | |
pose = rearrange(pose, '... (j d) -> ... j d', d=6) | |
pose = pose.squeeze(-2) # in case of only one angle | |
pose = rotation_6d_to_matrix(pose) | |
pose = matrix_to_axis_angle(pose) | |
if j > 1: | |
pose = rearrange(pose, '... j d -> ... (j d)') | |
elif formats == "aa->6d": | |
j = pose.shape[-1] / 3 | |
pose = rearrange(pose, '... (j c) -> ... j c', c=3) | |
pose = pose.squeeze(-2) # in case of only one angle | |
# axis-angle to rotation matrix & drop last row | |
pose = matrix_to_rotation_6d(axis_angle_to_matrix(pose)) | |
if j > 1: | |
pose = rearrange(pose, '... j d -> ... (j d)') | |
elif formats == "aa->rot": | |
j = pose.shape[-1] / 3 | |
pose = rearrange(pose, '... (j c) -> ... j c', c=3) | |
pose = pose.squeeze(-2) # in case of only one angle | |
# axis-angle to rotation matrix & drop last row | |
pose = torch.clamp(axis_angle_to_matrix(pose), min=-1.0, max=1.0) | |
elif formats == "6d->rot": | |
j = pose.shape[-1] / 6 | |
pose = rearrange(pose, '... (j d) -> ... j d', d=6) | |
pose = pose.squeeze(-2) # in case of only one angle | |
pose = torch.clamp(rotation_6d_to_matrix(pose), min=-1.0, max=1.0) | |
elif formats == "rot->aa": | |
# pose = rearrange(pose, '... (j d1 d2) -> ... j d1 d2', d1=3, d2=3) | |
pose = matrix_to_axis_angle(pose) | |
elif formats == "rot->6d": | |
# pose = rearrange(pose, '... (j d1 d2) -> ... j d1 d2', d1=3, d2=3) | |
pose = matrix_to_rotation_6d(pose) | |
else: | |
raise ValueError(f"specified conversion format is invalid: {formats}") | |
return pose | |
def apply_rot_delta(rots, deltas, in_format="6d", out_format="6d"): | |
""" | |
rots needs to have same dimentionality as delta | |
""" | |
assert rots.shape == deltas.shape | |
if in_format == "aa": | |
j = rots.shape[-1] / 3 | |
elif in_format == "6d": | |
j = rots.shape[-1] / 6 | |
else: | |
raise ValueError(f"specified conversion format is unsupported: {in_format}") | |
rots = transform_body_pose(rots, f"{in_format}->rot") | |
deltas = transform_body_pose(deltas, f"{in_format}->rot") | |
new_rots = torch.einsum("...ij,...jk->...ik", rots, deltas) # Ri+1=Ri@delta | |
new_rots = transform_body_pose(new_rots, f"rot->{out_format}") | |
if j > 1: | |
new_rots = rearrange(new_rots, '... j d -> ... (j d)') | |
return new_rots | |
def rot_diff(rots1, rots2=None, in_format="6d", out_format="6d"): | |
""" | |
dim 0 is considered to be the time dimention, this is where the shift will happen | |
""" | |
self_diff = False | |
if in_format == "aa": | |
j = rots1.shape[-1] / 3 | |
elif in_format == "6d": | |
j = rots1.shape[-1] / 6 | |
else: | |
raise ValueError(f"specified conversion format is unsupported: {in_format}") | |
rots1 = transform_body_pose(rots1, f"{in_format}->rot") | |
if rots2 is not None: | |
rots2 = transform_body_pose(rots2, f"{in_format}->rot") | |
else: | |
self_diff = True | |
rots2 = rots1 | |
rots1 = rots1.roll(1, 0) | |
rots_diff = torch.einsum("...ij,...ik->...jk", rots1, rots2) # Ri.T@R_i+1 | |
if self_diff: | |
rots_diff[0, ..., :, :] = torch.eye(3, device=rots1.device) | |
rots_diff = transform_body_pose(rots_diff, f"rot->{out_format}") | |
if j > 1: | |
rots_diff = rearrange(rots_diff, '... j d -> ... (j d)') | |
return rots_diff | |
def change_for(p, R, T=0, forward=True): | |
""" | |
Change frame of reference for vector p | |
p: vector in original coordinate frame | |
R: rotation matrix of new coordinate frame ([x, y, z] format) | |
T: translation of new coordinate frame | |
Let angle R by a. | |
forward: rotates the coordinate frame by -a (True) or rotate the point | |
by +a. | |
""" | |
if forward: # R.T @ (p_global - pelvis_translation) | |
return torch.einsum('...di,...d->...i', R, p - T) | |
else: # R @ (p_global - pelvis_translation) | |
return torch.einsum('...di,...i->...d', R, p) + T | |
def get_z_rot(rot_, in_format="6d"): | |
rot = rot_.clone().detach() | |
rot = transform_body_pose(rot, f"{in_format}->rot") | |
euler_z = matrix_to_euler_angles(rot, "ZYX") | |
euler_z[..., 1:] = 0.0 | |
z_rot = torch.clamp( | |
euler_angles_to_matrix(euler_z, "ZYX"), | |
min=-1.0, max=1.0) # add zero XY euler angles | |
return z_rot | |
def remove_z_rot(pose, in_format="6d", out_format="6d"): | |
""" | |
zero-out the global orientation around Z axis | |
""" | |
assert out_format == "6d" | |
if isinstance(pose, np.ndarray): | |
pose = torch.from_numpy(pose) | |
# transform to matrix | |
pose = transform_body_pose(pose, f"{in_format}->rot") | |
pose = matrix_to_euler_angles(pose, "ZYX") | |
pose[..., 0] = 0 | |
pose = matrix_to_rotation_6d(torch.clamp( | |
euler_angles_to_matrix(pose, "ZYX"), | |
min=-1.0, max=1.0)) | |
return pose | |
def local_to_global_orient(body_orient: Tensor, poses: Tensor, parents: list, | |
input_format='aa', output_format='aa'): | |
""" | |
Modified from aitviewer | |
Convert relative joint angles to global by unrolling the kinematic chain. | |
This function is fully differentiable ;) | |
:param poses: A tensor of shape (N, N_JOINTS*d) defining the relative poses in angle-axis format. | |
:param parents: A list of parents for each joint j, i.e. parent[j] is the parent of joint j. | |
:param output_format: 'aa' for axis-angle or 'rotmat' for rotation matrices. | |
:param input_format: 'aa' or 'rotmat' ... | |
:return: The global joint angles as a tensor of shape (N, N_JOINTS*DOF). | |
""" | |
assert output_format in ['aa', 'rotmat'] | |
assert input_format in ['aa', 'rotmat'] | |
dof = 3 if input_format == 'aa' else 9 | |
n_joints = poses.shape[-1] // dof + 1 | |
if input_format == 'aa': | |
body_orient = rotvec_to_rotmat(body_orient) | |
local_oris = rotvec_to_rotmat(rearrange(poses, '... (j d) -> ... j d', d=3)) | |
local_oris = torch.cat((body_orient[..., None, :, :], local_oris), dim=-3) | |
else: | |
# this part has not been tested | |
local_oris = torch.cat((body_orient[..., None, :, :], local_oris), dim=-3) | |
global_oris_ = [] | |
# Apply the chain rule starting from the pelvis | |
for j in range(n_joints): | |
if parents[j] < 0: | |
# root | |
global_oris_.append(local_oris[..., j, :, :]) | |
else: | |
parent_rot = global_oris_[parents[j]] | |
local_rot = local_oris[..., j, :, :] | |
global_oris_.append(torch.einsum('...ij,...jk->...ik', parent_rot, local_rot)) | |
# global_oris[..., j, :, :] = torch.bmm(parent_rot, local_rot) | |
global_oris = torch.stack(global_oris_, dim=1) | |
# global_oris: ... x J x 3 x 3 | |
# account for the body's root orientation | |
# global_oris = torch.einsum('...ij,...jk->...ik', body_orient[..., None, :, :], global_oris) | |
if output_format == 'aa': | |
return rotmat_to_rotvec(global_oris) | |
# res = global_oris.reshape((-1, n_joints * 3)) | |
else: | |
return global_oris | |
# return res |