nouamanetazi's picture
nouamanetazi HF staff
Upload folder using huggingface_hub
df7cbb5 verified
import threading
from .config import *
from .models import *
from .utils import *
import random
def generate_response(prompt, model_name):
"""
Replace this with actual API calls to your LLM endpoints
"""
# Placeholder implementation
responses = {
"gpt4": "This is a simulated GPT-4 response",
"claude3": "This is a simulated Claude-3 response",
"gemini": "This is a simulated Gemini-Pro response",
"mixtral": "This is a simulated Mixtral response",
"llama2": "This is a simulated Llama-2 response"
}
return responses.get(model_name, "Model not found")
def get_responses(prompt, model_a, model_b):
results = {}
def predict_and_store(prompt, model, result_storage):
try:
if model in AVAILABLE_MODELS:
result = generate_response(prompt, AVAILABLE_MODELS[model])
else:
result = generate_response(prompt, model)
result_storage[model] = result
except Exception as e:
raise gr.Error(f'Unable to generate response: {str(e)}')
thread1 = threading.Thread(target=predict_and_store, args=(prompt, model_a, results))
thread2 = threading.Thread(target=predict_and_store, args=(prompt, model_b, results))
thread1.start()
thread2.start()
thread1.join()
thread2.join()
return results[model_a], results[model_b]
def random_models():
return random.sample(list(AVAILABLE_MODELS.keys()), 2)