Spaces:
Running
Running
import threading | |
from .config import * | |
from .models import * | |
from .utils import * | |
import random | |
def generate_response(prompt, model_name): | |
""" | |
Replace this with actual API calls to your LLM endpoints | |
""" | |
# Placeholder implementation | |
responses = { | |
"gpt4": "This is a simulated GPT-4 response", | |
"claude3": "This is a simulated Claude-3 response", | |
"gemini": "This is a simulated Gemini-Pro response", | |
"mixtral": "This is a simulated Mixtral response", | |
"llama2": "This is a simulated Llama-2 response" | |
} | |
return responses.get(model_name, "Model not found") | |
def get_responses(prompt, model_a, model_b): | |
results = {} | |
def predict_and_store(prompt, model, result_storage): | |
try: | |
if model in AVAILABLE_MODELS: | |
result = generate_response(prompt, AVAILABLE_MODELS[model]) | |
else: | |
result = generate_response(prompt, model) | |
result_storage[model] = result | |
except Exception as e: | |
raise gr.Error(f'Unable to generate response: {str(e)}') | |
thread1 = threading.Thread(target=predict_and_store, args=(prompt, model_a, results)) | |
thread2 = threading.Thread(target=predict_and_store, args=(prompt, model_b, results)) | |
thread1.start() | |
thread2.start() | |
thread1.join() | |
thread2.join() | |
return results[model_a], results[model_b] | |
def random_models(): | |
return random.sample(list(AVAILABLE_MODELS.keys()), 2) |