Spaces:
Sleeping
Sleeping
#https://youtu.be/csFGTLT6_WQ | |
# u-net model | |
import os | |
import segmentation_models as sm | |
from keras.layers import ( | |
BatchNormalization, | |
Conv2D, | |
Conv2DTranspose, | |
Dropout, | |
Input, | |
MaxPooling2D, | |
concatenate, | |
) | |
from keras.models import Model | |
os.environ["SM_FRAMEWORK"] = "tf.keras" | |
os.environ["_TF_KERAS_FRAMEWORK_NAME"] = "tf.keras" | |
sm.set_framework('tf.keras') | |
################################################################ | |
def SpecSeg(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS): | |
#Build the model | |
inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS)) | |
s = inputs | |
#Contraction path | |
c1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(s) | |
c1 = Dropout(0.1)(c1) | |
c1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c1) | |
c1 = BatchNormalization(axis=-1)(c1) | |
p1 = MaxPooling2D((2, 2))(c1) | |
c2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(p1) | |
c2 = Dropout(0.1)(c2) | |
c2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c2) | |
c2 = BatchNormalization(axis=-1)(c2) | |
p2 = MaxPooling2D((2, 2))(c2) | |
c3 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(p2) | |
c3 = Dropout(0.2)(c3) | |
c3 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c3) | |
c3 = BatchNormalization(axis=-1)(c3) | |
p3 = MaxPooling2D((2, 2))(c3) | |
c4 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(p3) | |
c4 = Dropout(0.2)(c4) | |
c4 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c4) | |
c4 = BatchNormalization(axis=-1)(c4) | |
p4 = MaxPooling2D((2, 2))(c4) | |
c5 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(p4) | |
c5 = Dropout(0.3)(c5) | |
c5 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c5) | |
c5 = BatchNormalization(axis=-1)(c5) | |
#Expansive path | |
u6 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c5) | |
u6 = concatenate([u6, c4]) | |
c6 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(u6) | |
c6 = Dropout(0.2)(c6) | |
c6 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c6) | |
u7 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c6) | |
u7 = concatenate([u7, c3]) | |
c7 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(u7) | |
c7 = Dropout(0.2)(c7) | |
c7 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c7) | |
u8 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(c7) | |
u8 = concatenate([u8, c2]) | |
c8 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(u8) | |
c8 = Dropout(0.1)(c8) | |
c8 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c8) | |
u9 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same')(c8) | |
u9 = concatenate([u9, c1], axis=3) | |
c9 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(u9) | |
c9 = Dropout(0.1)(c9) | |
c9 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c9) | |
outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9) | |
model = Model(inputs=[inputs], outputs=[outputs], name = 'SpecSeg') | |
# model.summary() | |
return model | |