SpecSeg / SpecSeg.py
atifanwerPK's picture
uploaded app.py (no model)
2d4a607 verified
#https://youtu.be/csFGTLT6_WQ
# u-net model
import os
import segmentation_models as sm
from keras.layers import (
BatchNormalization,
Conv2D,
Conv2DTranspose,
Dropout,
Input,
MaxPooling2D,
concatenate,
)
from keras.models import Model
os.environ["SM_FRAMEWORK"] = "tf.keras"
os.environ["_TF_KERAS_FRAMEWORK_NAME"] = "tf.keras"
sm.set_framework('tf.keras')
################################################################
def SpecSeg(IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS):
#Build the model
inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS))
s = inputs
#Contraction path
c1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(s)
c1 = Dropout(0.1)(c1)
c1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c1)
c1 = BatchNormalization(axis=-1)(c1)
p1 = MaxPooling2D((2, 2))(c1)
c2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(p1)
c2 = Dropout(0.1)(c2)
c2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c2)
c2 = BatchNormalization(axis=-1)(c2)
p2 = MaxPooling2D((2, 2))(c2)
c3 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(p2)
c3 = Dropout(0.2)(c3)
c3 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c3)
c3 = BatchNormalization(axis=-1)(c3)
p3 = MaxPooling2D((2, 2))(c3)
c4 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(p3)
c4 = Dropout(0.2)(c4)
c4 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c4)
c4 = BatchNormalization(axis=-1)(c4)
p4 = MaxPooling2D((2, 2))(c4)
c5 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(p4)
c5 = Dropout(0.3)(c5)
c5 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c5)
c5 = BatchNormalization(axis=-1)(c5)
#Expansive path
u6 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c5)
u6 = concatenate([u6, c4])
c6 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(u6)
c6 = Dropout(0.2)(c6)
c6 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c6)
u7 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c6)
u7 = concatenate([u7, c3])
c7 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(u7)
c7 = Dropout(0.2)(c7)
c7 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c7)
u8 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(c7)
u8 = concatenate([u8, c2])
c8 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(u8)
c8 = Dropout(0.1)(c8)
c8 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c8)
u9 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same')(c8)
u9 = concatenate([u9, c1], axis=3)
c9 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(u9)
c9 = Dropout(0.1)(c9)
c9 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='RandomNormal', padding='same')(c9)
outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9)
model = Model(inputs=[inputs], outputs=[outputs], name = 'SpecSeg')
# model.summary()
return model