|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" |
|
|
|
import torch |
|
import numpy as np |
|
from . import util |
|
from .body import Body |
|
from .hand import Hand |
|
from .face import Face |
|
from annotator.util import annotator_ckpts_path |
|
|
|
|
|
body_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/body_pose_model.pth" |
|
hand_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/hand_pose_model.pth" |
|
face_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/facenet.pth" |
|
|
|
|
|
def draw_pose(pose, H, W, draw_body=True, draw_hand=True, draw_face=True): |
|
bodies = pose['bodies'] |
|
faces = pose['faces'] |
|
hands = pose['hands'] |
|
candidate = bodies['candidate'] |
|
subset = bodies['subset'] |
|
canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8) |
|
|
|
if draw_body: |
|
canvas = util.draw_bodypose(canvas, candidate, subset) |
|
|
|
if draw_hand: |
|
canvas = util.draw_handpose(canvas, hands) |
|
|
|
if draw_face: |
|
canvas = util.draw_facepose(canvas, faces) |
|
|
|
return canvas |
|
|
|
|
|
class OpenposeDetector: |
|
def __init__(self): |
|
body_modelpath = os.path.join(annotator_ckpts_path, "body_pose_model.pth") |
|
hand_modelpath = os.path.join(annotator_ckpts_path, "hand_pose_model.pth") |
|
face_modelpath = os.path.join(annotator_ckpts_path, "facenet.pth") |
|
|
|
if not os.path.exists(body_modelpath): |
|
from basicsr.utils.download_util import load_file_from_url |
|
load_file_from_url(body_model_path, model_dir=annotator_ckpts_path) |
|
|
|
if not os.path.exists(hand_modelpath): |
|
from basicsr.utils.download_util import load_file_from_url |
|
load_file_from_url(hand_model_path, model_dir=annotator_ckpts_path) |
|
|
|
if not os.path.exists(face_modelpath): |
|
from basicsr.utils.download_util import load_file_from_url |
|
load_file_from_url(face_model_path, model_dir=annotator_ckpts_path) |
|
|
|
self.body_estimation = Body(body_modelpath) |
|
self.hand_estimation = Hand(hand_modelpath) |
|
self.face_estimation = Face(face_modelpath) |
|
|
|
def __call__(self, oriImg, hand_and_face=False, return_is_index=False): |
|
oriImg = oriImg[:, :, ::-1].copy() |
|
H, W, C = oriImg.shape |
|
with torch.no_grad(): |
|
candidate, subset = self.body_estimation(oriImg) |
|
hands = [] |
|
faces = [] |
|
if hand_and_face: |
|
|
|
hands_list = util.handDetect(candidate, subset, oriImg) |
|
for x, y, w, is_left in hands_list: |
|
peaks = self.hand_estimation(oriImg[y:y+w, x:x+w, :]).astype(np.float32) |
|
if peaks.ndim == 2 and peaks.shape[1] == 2: |
|
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W) |
|
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H) |
|
hands.append(peaks.tolist()) |
|
|
|
faces_list = util.faceDetect(candidate, subset, oriImg) |
|
for x, y, w in faces_list: |
|
heatmaps = self.face_estimation(oriImg[y:y+w, x:x+w, :]) |
|
peaks = self.face_estimation.compute_peaks_from_heatmaps(heatmaps).astype(np.float32) |
|
if peaks.ndim == 2 and peaks.shape[1] == 2: |
|
peaks[:, 0] = np.where(peaks[:, 0] < 1e-6, -1, peaks[:, 0] + x) / float(W) |
|
peaks[:, 1] = np.where(peaks[:, 1] < 1e-6, -1, peaks[:, 1] + y) / float(H) |
|
faces.append(peaks.tolist()) |
|
if candidate.ndim == 2 and candidate.shape[1] == 4: |
|
candidate = candidate[:, :2] |
|
candidate[:, 0] /= float(W) |
|
candidate[:, 1] /= float(H) |
|
bodies = dict(candidate=candidate.tolist(), subset=subset.tolist()) |
|
pose = dict(bodies=bodies, hands=hands, faces=faces) |
|
if return_is_index: |
|
return pose |
|
else: |
|
return draw_pose(pose, H, W) |
|
|