Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,6 +3,9 @@ from PIL import Image, ImageDraw, ImageFont
|
|
| 3 |
from ultralytics import YOLO, RTDETR
|
| 4 |
import spaces
|
| 5 |
import os
|
|
|
|
|
|
|
|
|
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
|
| 8 |
def get_model_path(model_name):
|
|
@@ -26,18 +29,22 @@ def get_model_path(model_name):
|
|
| 26 |
return model_cache_path
|
| 27 |
|
| 28 |
@spaces.GPU
|
| 29 |
-
def yolo_inference(
|
| 30 |
"""
|
| 31 |
-
Performs budgerigar gender determination inference on an image
|
|
|
|
| 32 |
|
| 33 |
-
This function handles
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
|
| 38 |
Args:
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
| 41 |
model_id (str): The identifier of the model to use (e.g., 'budgerigar_yolo11x.pt',
|
| 42 |
'budgerigar_rtdetr-x.pt').
|
| 43 |
conf_threshold (float): The confidence threshold for filtering detections.
|
|
@@ -47,78 +54,213 @@ def yolo_inference(images, model_id, conf_threshold, iou_threshold, max_detectio
|
|
| 47 |
max_detection (int): The maximum number of detections to return and display.
|
| 48 |
|
| 49 |
Returns:
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
| 53 |
"""
|
| 54 |
-
|
| 55 |
-
# Create a blank image
|
| 56 |
-
width, height = 640, 480
|
| 57 |
-
blank_image = Image.new("RGB", (width, height), color="white")
|
| 58 |
-
draw = ImageDraw.Draw(blank_image)
|
| 59 |
-
message = "No image provided"
|
| 60 |
-
font = ImageFont.load_default(size=40)
|
| 61 |
-
bbox = draw.textbbox((0, 0), message, font=font)
|
| 62 |
-
text_width = bbox[2] - bbox[0]
|
| 63 |
-
text_height = bbox[3] - bbox[1]
|
| 64 |
-
text_x = (width - text_width) / 2
|
| 65 |
-
text_y = (height - text_height) / 2
|
| 66 |
-
draw.text((text_x, text_y), message, fill="black", font=font)
|
| 67 |
-
return blank_image
|
| 68 |
-
|
| 69 |
-
model_path = get_model_path(model_id) # Download model
|
| 70 |
model_type = RTDETR if 'rtdetr' in model_id.lower() else YOLO
|
| 71 |
model = model_type(model_path)
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
)
|
|
|
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
image = Image.fromarray(image_array[..., ::-1])
|
| 86 |
-
return image
|
| 87 |
-
|
| 88 |
-
interface = gr.Interface(
|
| 89 |
-
fn=yolo_inference,
|
| 90 |
-
inputs=[
|
| 91 |
-
gr.Image(type="pil", label="Example Image", interactive=True),
|
| 92 |
-
gr.Radio(
|
| 93 |
-
choices=[
|
| 94 |
-
'budgerigar_yolo11x.pt', 'budgerigar_yolov9e.pt',
|
| 95 |
-
'budgerigar_yolo11l.pt', 'budgerigar_yolo11m.pt',
|
| 96 |
-
'budgerigar_yolo11s.pt', 'budgerigar_yolo11n.pt',
|
| 97 |
-
'budgerigar_rtdetr-x.pt'
|
| 98 |
-
],
|
| 99 |
-
label="Model Name",
|
| 100 |
-
value="budgerigar_yolo11x.pt",
|
| 101 |
-
),
|
| 102 |
-
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold"),
|
| 103 |
-
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU Threshold"),
|
| 104 |
-
gr.Slider(minimum=1, maximum=300, step=1, value=300, label="Max Detection"),
|
| 105 |
-
],
|
| 106 |
-
outputs=gr.Image(type="pil", label="Annotated Image"),
|
| 107 |
-
cache_examples=True,
|
| 108 |
-
title="Budgerigar Gender Determination",
|
| 109 |
-
description=(
|
| 110 |
"Pretrained object detection models for determining budgerigar gender based on cere color variations. "
|
| 111 |
-
"Upload image(s) for inference. For more details, refer to the paper: "
|
| 112 |
'<a href="https://ieeexplore.ieee.org/document/10773570" target="_blank">'
|
| 113 |
'"Advanced Computer Vision Techniques for Reliable Gender Determination in Budgerigars (Melopsittacus Undulatus)"</a>'
|
| 114 |
"<br><br>"
|
| 115 |
"To help us improve, please report any incorrect gender determinations by sending the original image and details to -> <a href='mailto:atalaydenknalbant@hotmail.com'>Email</a>."
|
| 116 |
"Your feedback is important for retraining and improving the model."
|
| 117 |
-
)
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from ultralytics import YOLO, RTDETR
|
| 4 |
import spaces
|
| 5 |
import os
|
| 6 |
+
import cv2
|
| 7 |
+
import numpy as np
|
| 8 |
+
import tempfile
|
| 9 |
from huggingface_hub import hf_hub_download
|
| 10 |
|
| 11 |
def get_model_path(model_name):
|
|
|
|
| 29 |
return model_cache_path
|
| 30 |
|
| 31 |
@spaces.GPU
|
| 32 |
+
def yolo_inference(input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection):
|
| 33 |
"""
|
| 34 |
+
Performs budgerigar gender determination inference on an image or video
|
| 35 |
+
using a selected YOLO or RTDETR model.
|
| 36 |
|
| 37 |
+
This function handles both image and video inputs. For images, it loads the
|
| 38 |
+
appropriate model and annotates the image. For videos, it processes each
|
| 39 |
+
frame, performs detection, and then reconstructs an annotated video.
|
| 40 |
+
Error handling for missing inputs is included, returning blank outputs with messages.
|
| 41 |
|
| 42 |
Args:
|
| 43 |
+
input_type (str): Specifies the input type, either "Image" or "Video".
|
| 44 |
+
image (PIL.Image.Image or None): The input image if `input_type` is "Image".
|
| 45 |
+
None otherwise.
|
| 46 |
+
video (str or None): The path to the input video file if `input_type` is "Video".
|
| 47 |
+
None otherwise.
|
| 48 |
model_id (str): The identifier of the model to use (e.g., 'budgerigar_yolo11x.pt',
|
| 49 |
'budgerigar_rtdetr-x.pt').
|
| 50 |
conf_threshold (float): The confidence threshold for filtering detections.
|
|
|
|
| 54 |
max_detection (int): The maximum number of detections to return and display.
|
| 55 |
|
| 56 |
Returns:
|
| 57 |
+
tuple: A tuple containing two elements:
|
| 58 |
+
- PIL.Image.Image or None: The annotated image if `input_type` was "Image",
|
| 59 |
+
otherwise None.
|
| 60 |
+
- str or None: The path to the annotated video file if `input_type` was "Video",
|
| 61 |
+
otherwise None.
|
| 62 |
"""
|
| 63 |
+
model_path = get_model_path(model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
model_type = RTDETR if 'rtdetr' in model_id.lower() else YOLO
|
| 65 |
model = model_type(model_path)
|
| 66 |
+
|
| 67 |
+
if input_type == "Image":
|
| 68 |
+
if image is None:
|
| 69 |
+
width, height = 640, 480
|
| 70 |
+
blank_image = Image.new("RGB", (width, height), color="white")
|
| 71 |
+
draw = ImageDraw.Draw(blank_image)
|
| 72 |
+
message = "No image provided"
|
| 73 |
+
font = ImageFont.load_default(size=40)
|
| 74 |
+
bbox = draw.textbbox((0, 0), message, font=font)
|
| 75 |
+
text_width = bbox[2] - bbox[0]
|
| 76 |
+
text_height = bbox[3] - bbox[1]
|
| 77 |
+
text_x = (width - text_width) / 2
|
| 78 |
+
text_y = (height - text_height) / 2
|
| 79 |
+
draw.text((text_x, text_y), message, fill="black", font=font)
|
| 80 |
+
return blank_image, None
|
| 81 |
+
|
| 82 |
+
results = model.predict(
|
| 83 |
+
source=image,
|
| 84 |
+
conf=conf_threshold,
|
| 85 |
+
iou=iou_threshold,
|
| 86 |
+
imgsz=640,
|
| 87 |
+
max_det=max_detection,
|
| 88 |
+
show_labels=True,
|
| 89 |
+
show_conf=True,
|
| 90 |
+
)
|
| 91 |
+
for r in results:
|
| 92 |
+
image_array = r.plot()
|
| 93 |
+
annotated_image = Image.fromarray(image_array[..., ::-1])
|
| 94 |
+
return annotated_image, None
|
| 95 |
+
|
| 96 |
+
elif input_type == "Video":
|
| 97 |
+
if video is None:
|
| 98 |
+
width, height = 640, 480
|
| 99 |
+
blank_image = Image.new("RGB", (width, height), color="white")
|
| 100 |
+
draw = ImageDraw.Draw(blank_image)
|
| 101 |
+
message = "No video provided"
|
| 102 |
+
font = ImageFont.load_default(size=40)
|
| 103 |
+
bbox = draw.textbbox((0, 0), message, font=font)
|
| 104 |
+
text_width = bbox[2] - bbox[0]
|
| 105 |
+
text_height = bbox[3] - bbox[1]
|
| 106 |
+
text_x = (width - text_width) / 2
|
| 107 |
+
text_y = (height - text_height) / 2
|
| 108 |
+
draw.text((text_x, text_y), message, fill="black", font=font)
|
| 109 |
+
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
| 110 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 111 |
+
out = cv2.VideoWriter(temp_video_file, fourcc, 1, (width, height))
|
| 112 |
+
frame = cv2.cvtColor(np.array(blank_image), cv2.COLOR_RGB2BGR)
|
| 113 |
+
out.write(frame)
|
| 114 |
+
out.release()
|
| 115 |
+
return None, temp_video_file
|
| 116 |
+
|
| 117 |
+
cap = cv2.VideoCapture(video)
|
| 118 |
+
fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 25
|
| 119 |
+
frames = []
|
| 120 |
+
while True:
|
| 121 |
+
ret, frame = cap.read()
|
| 122 |
+
if not ret:
|
| 123 |
+
break
|
| 124 |
+
pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
| 125 |
+
results = model.predict(
|
| 126 |
+
source=pil_frame,
|
| 127 |
+
conf=conf_threshold,
|
| 128 |
+
iou=iou_threshold,
|
| 129 |
+
imgsz=640,
|
| 130 |
+
max_det=max_detection,
|
| 131 |
+
show_labels=True,
|
| 132 |
+
show_conf=True,
|
| 133 |
+
)
|
| 134 |
+
for r in results:
|
| 135 |
+
annotated_frame_array = r.plot()
|
| 136 |
+
annotated_frame = cv2.cvtColor(annotated_frame_array, cv2.COLOR_BGR2RGB)
|
| 137 |
+
frames.append(annotated_frame)
|
| 138 |
+
cap.release()
|
| 139 |
+
if not frames:
|
| 140 |
+
return None, None
|
| 141 |
+
|
| 142 |
+
height_out, width_out, _ = frames[0].shape
|
| 143 |
+
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name
|
| 144 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
| 145 |
+
out = cv2.VideoWriter(temp_video_file, fourcc, fps, (width_out, height_out))
|
| 146 |
+
for f in frames:
|
| 147 |
+
f_bgr = cv2.cvtColor(f, cv2.COLOR_RGB2BGR)
|
| 148 |
+
out.write(f_bgr)
|
| 149 |
+
out.release()
|
| 150 |
+
return None, temp_video_file
|
| 151 |
+
|
| 152 |
+
return None, None
|
| 153 |
+
|
| 154 |
+
def update_visibility(input_type):
|
| 155 |
+
"""
|
| 156 |
+
Adjusts the visibility of Gradio components based on the selected input type.
|
| 157 |
+
|
| 158 |
+
This function dynamically shows or hides the image and video input/output
|
| 159 |
+
components in the Gradio interface to ensure only relevant fields are visible.
|
| 160 |
+
|
| 161 |
+
Args:
|
| 162 |
+
input_type (str): The selected input type, either "Image" or "Video".
|
| 163 |
+
|
| 164 |
+
Returns:
|
| 165 |
+
tuple: A tuple of `gr.update` objects for the visibility of:
|
| 166 |
+
(image input, video input, image output, video output).
|
| 167 |
+
"""
|
| 168 |
+
if input_type == "Image":
|
| 169 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
| 170 |
+
else:
|
| 171 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
|
| 172 |
+
|
| 173 |
+
def yolo_inference_for_examples(image, model_id, conf_threshold, iou_threshold, max_detection):
|
| 174 |
+
"""
|
| 175 |
+
Wrapper function for `yolo_inference` specifically for Gradio examples that use images.
|
| 176 |
+
|
| 177 |
+
This function simplifies the `yolo_inference` call for the `gr.Examples` component,
|
| 178 |
+
ensuring only image-based inference is performed for predefined examples.
|
| 179 |
+
|
| 180 |
+
Args:
|
| 181 |
+
image (PIL.Image.Image): The input image for the example.
|
| 182 |
+
model_id (str): The identifier of the YOLO model to use.
|
| 183 |
+
conf_threshold (float): The confidence threshold.
|
| 184 |
+
iou_threshold (float): The IoU threshold.
|
| 185 |
+
max_detection (int): The maximum number of detections.
|
| 186 |
+
|
| 187 |
+
Returns:
|
| 188 |
+
PIL.Image.Image or None: The annotated image. Returns None if no image is processed.
|
| 189 |
+
"""
|
| 190 |
+
annotated_image, _ = yolo_inference(
|
| 191 |
+
input_type="Image",
|
| 192 |
+
image=image,
|
| 193 |
+
video=None,
|
| 194 |
+
model_id=model_id,
|
| 195 |
+
conf_threshold=conf_threshold,
|
| 196 |
+
iou_threshold=iou_threshold,
|
| 197 |
+
max_detection=max_detection
|
| 198 |
)
|
| 199 |
+
return annotated_image
|
| 200 |
|
| 201 |
+
with gr.Blocks(title="Budgerigar Gender Determination") as app:
|
| 202 |
+
gr.Markdown("# Budgerigar Gender Determination")
|
| 203 |
+
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
"Pretrained object detection models for determining budgerigar gender based on cere color variations. "
|
| 205 |
+
"Upload image(s) or video(s) for inference. For more details, refer to the paper: "
|
| 206 |
'<a href="https://ieeexplore.ieee.org/document/10773570" target="_blank">'
|
| 207 |
'"Advanced Computer Vision Techniques for Reliable Gender Determination in Budgerigars (Melopsittacus Undulatus)"</a>'
|
| 208 |
"<br><br>"
|
| 209 |
"To help us improve, please report any incorrect gender determinations by sending the original image and details to -> <a href='mailto:atalaydenknalbant@hotmail.com'>Email</a>."
|
| 210 |
"Your feedback is important for retraining and improving the model."
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
with gr.Row():
|
| 214 |
+
with gr.Column():
|
| 215 |
+
image = gr.Image(type="pil", label="Image Input", visible=True)
|
| 216 |
+
video = gr.Video(label="Video Input", visible=False)
|
| 217 |
+
input_type = gr.Radio(
|
| 218 |
+
choices=["Image", "Video"],
|
| 219 |
+
value="Image",
|
| 220 |
+
label="Input Type",
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
model_id = gr.Radio(
|
| 224 |
+
choices=[
|
| 225 |
+
'budgerigar_yolo11x.pt', 'budgerigar_yolov9e.pt',
|
| 226 |
+
'budgerigar_yolo11l.pt', 'budgerigar_yolo11m.pt',
|
| 227 |
+
'budgerigar_yolo11s.pt', 'budgerigar_yolo11n.pt',
|
| 228 |
+
'budgerigar_rtdetr-x.pt'
|
| 229 |
+
],
|
| 230 |
+
label="Model Name",
|
| 231 |
+
value="budgerigar_yolo11x.pt",
|
| 232 |
+
)
|
| 233 |
+
conf_threshold = gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold")
|
| 234 |
+
iou_threshold = gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU Threshold")
|
| 235 |
+
max_detection = gr.Slider(minimum=1, maximum=300, step=1, value=300, label="Max Detection")
|
| 236 |
+
infer_button = gr.Button("Detect Objects")
|
| 237 |
+
with gr.Column():
|
| 238 |
+
output_image = gr.Image(type="pil", label="Annotated Image", visible=True)
|
| 239 |
+
output_video = gr.Video(label="Annotated Video", visible=False)
|
| 240 |
+
gr.DeepLinkButton()
|
| 241 |
+
|
| 242 |
+
input_type.change(
|
| 243 |
+
fn=update_visibility,
|
| 244 |
+
inputs=input_type,
|
| 245 |
+
outputs=[image, video, output_image, output_video],
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
infer_button.click(
|
| 249 |
+
fn=yolo_inference,
|
| 250 |
+
inputs=[input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection],
|
| 251 |
+
outputs=[output_image, output_video],
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
gr.Examples(
|
| 255 |
+
examples=[
|
| 256 |
+
["both.jpg", "budgerigar_rtdetr-x.pt", 0.25, 0.45, 300],
|
| 257 |
+
["Male.png", "budgerigar_yolov9e.pt", 0.25, 0.45, 300],
|
| 258 |
+
["Female.png", "budgerigar_yolo11x.pt", 0.25, 0.45, 300],
|
| 259 |
+
],
|
| 260 |
+
fn=yolo_inference_for_examples,
|
| 261 |
+
inputs=[image, model_id, conf_threshold, iou_threshold, max_detection],
|
| 262 |
+
outputs=[output_image],
|
| 263 |
+
label="Examples (Images)",
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
app.launch(mcp_server=True)
|