Upload 9 files
Browse files- .gitignore +1 -0
- Prediction_MODEL_FInal.ipynb +0 -0
- Procfile +1 -0
- df.pkl +3 -0
- laptop_data.csv +0 -0
- main.py +68 -0
- pipe.pkl +3 -0
- requirements.txt +3 -0
- setup.sh +9 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
venv
|
Prediction_MODEL_FInal.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Procfile
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
web: sh setup.sh && streamlit run app.py
|
df.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc60b3b8399854aef6b97ad97ef2e4928da652f860f3a4b60173b5a4647051f7
|
3 |
+
size 124865
|
laptop_data.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
main.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import learn as learn
|
2 |
+
import streamlit as st
|
3 |
+
import pickle
|
4 |
+
import numpy as np
|
5 |
+
import Scikit-learn
|
6 |
+
import sklearn
|
7 |
+
import sklearn
|
8 |
+
# import the model
|
9 |
+
pipe = pickle.load(open('pipe.pkl','rb'))
|
10 |
+
df = pickle.load(open('df.pkl','rb'))
|
11 |
+
|
12 |
+
st.title("Get An Estimated Value For Your Laptop By Filling Out The Details Below:")
|
13 |
+
|
14 |
+
# brand
|
15 |
+
company = st.selectbox('Brand',df['Company'].unique())
|
16 |
+
|
17 |
+
# type of laptop
|
18 |
+
type = st.selectbox('Type',df['TypeName'].unique())
|
19 |
+
|
20 |
+
# Ram
|
21 |
+
ram = st.selectbox('RAM (in GB)',[2,4,6,8,12,16,24,32,64])
|
22 |
+
|
23 |
+
# weightp
|
24 |
+
weight = st.number_input('Weight of the Laptop')
|
25 |
+
|
26 |
+
# Touchscreen
|
27 |
+
touchscreen = st.selectbox('Touchscreen',['No','Yes'])
|
28 |
+
|
29 |
+
# IPS
|
30 |
+
ips = st.selectbox('IPS',['No','Yes'])
|
31 |
+
|
32 |
+
# screen size
|
33 |
+
screen_size = st.number_input('Screen Size (in inches)')
|
34 |
+
|
35 |
+
# resolution
|
36 |
+
resolution = st.selectbox('Screen Resolution',['1920x1080','1366x768','1600x900','3840x2160','3200x1800','2880x1800','2560x1600','2560x1440','2304x1440'])
|
37 |
+
|
38 |
+
#cpu
|
39 |
+
cpu = st.selectbox('CPU',df['Cpu brand'].unique())
|
40 |
+
|
41 |
+
hdd = st.selectbox('HDD (in GB)',[0,128,256,512,1024,2048])
|
42 |
+
|
43 |
+
ssd = st.selectbox('SSD (in GB)',[0,8,128,256,512,1024])
|
44 |
+
|
45 |
+
gpu = st.selectbox('GPU',df['Gpu brand'].unique())
|
46 |
+
|
47 |
+
os = st.selectbox('OS (Operating System)',df['Os'].unique())
|
48 |
+
|
49 |
+
if st.button('Predict Price'):
|
50 |
+
# query
|
51 |
+
ppi = None
|
52 |
+
if touchscreen == 'Yes':
|
53 |
+
touchscreen = 1
|
54 |
+
else:
|
55 |
+
touchscreen = 0
|
56 |
+
|
57 |
+
if ips == 'Yes':
|
58 |
+
ips = 1
|
59 |
+
else:
|
60 |
+
ips = 0
|
61 |
+
|
62 |
+
X_res = int(resolution.split('x')[0])
|
63 |
+
Y_res = int(resolution.split('x')[1])
|
64 |
+
ppi = ((X_res**2) + (Y_res**2))**0.5/screen_size
|
65 |
+
query = np.array([company,type,ram,weight,touchscreen,ips,ppi,cpu,hdd,ssd,gpu,os])
|
66 |
+
|
67 |
+
query = query.reshape(1,12)
|
68 |
+
st.title("The predicted price of this configuration is " + str(int(np.exp(pipe.predict(query)[0]))))
|
pipe.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cdc048a9aca4fd13e3a8bdc7fffd357ae2766e076b015d7d79612044b98ff14
|
3 |
+
size 583802
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
scikit-learn
|
3 |
+
pickle
|
setup.sh
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mkdir -p ~/.streamlit/
|
2 |
+
|
3 |
+
echo "\
|
4 |
+
[server]\n\
|
5 |
+
port = $PORT\n\
|
6 |
+
enableCORS = false\n\
|
7 |
+
headless = true\n\
|
8 |
+
\n\
|
9 |
+
" > ~/.streamlit/config.toml
|