Spaces:
Runtime error
Runtime error
commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +97 -0
- model.py +82 -0
- requirements.txt +8 -0
- samples/COCO_val2017_000000006771.jpg +0 -0
- samples/COCO_val2017_000000021903.jpg +0 -0
- samples/COCO_val2017_000000030213.jpg +0 -0
- samples/COCO_val2017_000000039956.jpg +0 -0
- samples/COCO_val2017_000000045472.jpg +0 -0
- samples/COCO_val2017_000000053505.jpg +0 -0
- samples/COCO_val2017_000000057597.jpg +0 -0
- samples/COCO_val2017_000000059386.jpg +0 -0
- samples/COCO_val2017_000000067406.jpg +0 -0
- samples/COCO_val2017_000000069795.jpg +0 -0
- samples/COCO_val2017_000000084431.jpg +0 -0
- samples/COCO_val2017_000000088432.jpg +0 -0
- samples/COCO_val2017_000000100238.jpg +0 -0
- samples/COCO_val2017_000000104619.jpg +0 -0
- samples/COCO_val2017_000000104803.jpg +0 -0
- samples/COCO_val2017_000000124442.jpg +0 -0
- samples/COCO_val2017_000000125936.jpg +0 -0
- samples/COCO_val2017_000000132703.jpg +0 -0
- samples/COCO_val2017_000000146155.jpg +0 -0
- samples/COCO_val2017_000000149770.jpg +0 -0
- samples/COCO_val2017_000000152120.jpg +0 -0
- samples/COCO_val2017_000000154431.jpg +0 -0
- samples/COCO_val2017_000000161609.jpg +0 -0
- samples/COCO_val2017_000000163258.jpg +0 -0
- samples/COCO_val2017_000000168593.jpg +0 -0
- samples/COCO_val2017_000000170116.jpg +0 -0
- samples/COCO_val2017_000000172330.jpg +0 -0
- samples/COCO_val2017_000000173371.jpg +0 -0
- samples/COCO_val2017_000000175535.jpg +0 -0
- samples/COCO_val2017_000000178469.jpg +0 -0
- samples/COCO_val2017_000000180188.jpg +0 -0
- samples/COCO_val2017_000000180296.jpg +0 -0
- samples/COCO_val2017_000000181969.jpg +0 -0
- samples/COCO_val2017_000000190676.jpg +0 -0
- samples/COCO_val2017_000000199055.jpg +0 -0
- samples/COCO_val2017_000000204186.jpg +0 -0
- samples/COCO_val2017_000000213547.jpg +0 -0
- samples/COCO_val2017_000000216497.jpg +0 -0
- samples/COCO_val2017_000000216739.jpg +0 -0
- samples/COCO_val2017_000000224675.jpg +0 -0
- samples/COCO_val2017_000000226903.jpg +0 -0
- samples/COCO_val2017_000000230983.jpg +0 -0
- samples/COCO_val2017_000000232684.jpg +0 -0
- samples/COCO_val2017_000000234757.jpg +0 -0
- samples/COCO_val2017_000000256195.jpg +0 -0
- samples/COCO_val2017_000000266409.jpg +0 -0
- samples/COCO_val2017_000000267946.jpg +0 -0
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import io
|
4 |
+
|
5 |
+
|
6 |
+
# Designing the interface
|
7 |
+
st.title("🖼️ Image Captioning Demo 📝")
|
8 |
+
st.write("[Yih-Dar SHIEH](https://huggingface.co/ydshieh)")
|
9 |
+
|
10 |
+
st.sidebar.markdown(
|
11 |
+
"""
|
12 |
+
An image captioning model by combining ViT model with GPT2 model.
|
13 |
+
The encoder (ViT) and decoder (GPT2) are combined using Hugging Face transformers' [Vision-To-Text Encoder-Decoder
|
14 |
+
framework](https://huggingface.co/transformers/master/model_doc/visionencoderdecoder.html).
|
15 |
+
The pretrained weights of both models are loaded, with a set of randomly initialized cross-attention weights.
|
16 |
+
The model is trained on the COCO 2017 dataset for about 6900 steps (batch_size=256).
|
17 |
+
[Follow-up work of [Huggingface JAX/Flax event](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/).]\n
|
18 |
+
"""
|
19 |
+
)
|
20 |
+
|
21 |
+
with st.spinner('Loading and compiling ViT-GPT2 model ...'):
|
22 |
+
from model import *
|
23 |
+
|
24 |
+
random_image_id = get_random_image_id()
|
25 |
+
|
26 |
+
st.sidebar.title("Select a sample image")
|
27 |
+
sample_image_id = st.sidebar.selectbox(
|
28 |
+
"Please choose a sample image",
|
29 |
+
sample_image_ids
|
30 |
+
)
|
31 |
+
|
32 |
+
if st.sidebar.button("Random COCO 2017 (val) images"):
|
33 |
+
random_image_id = get_random_image_id()
|
34 |
+
sample_image_id = "None"
|
35 |
+
|
36 |
+
bytes_data = None
|
37 |
+
with st.sidebar.form("file-uploader-form", clear_on_submit=True):
|
38 |
+
uploaded_file = st.file_uploader("Choose a file")
|
39 |
+
submitted = st.form_submit_button("Upload")
|
40 |
+
if submitted and uploaded_file is not None:
|
41 |
+
bytes_data = io.BytesIO(uploaded_file.getvalue())
|
42 |
+
|
43 |
+
if (bytes_data is None) and submitted:
|
44 |
+
|
45 |
+
st.write("No file is selected to upload")
|
46 |
+
|
47 |
+
else:
|
48 |
+
|
49 |
+
image_id = random_image_id
|
50 |
+
if sample_image_id != "None":
|
51 |
+
assert type(sample_image_id) == int
|
52 |
+
image_id = sample_image_id
|
53 |
+
|
54 |
+
sample_name = f"COCO_val2017_{str(image_id).zfill(12)}.jpg"
|
55 |
+
sample_path = os.path.join(sample_dir, sample_name)
|
56 |
+
|
57 |
+
if bytes_data is not None:
|
58 |
+
image = Image.open(bytes_data)
|
59 |
+
elif os.path.isfile(sample_path):
|
60 |
+
image = Image.open(sample_path)
|
61 |
+
else:
|
62 |
+
url = f"http://images.cocodataset.org/val2017/{str(image_id).zfill(12)}.jpg"
|
63 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
64 |
+
|
65 |
+
width, height = image.size
|
66 |
+
resized = image.resize(size=(width, height))
|
67 |
+
if height > 384:
|
68 |
+
width = int(width / height * 384)
|
69 |
+
height = 384
|
70 |
+
resized = resized.resize(size=(width, height))
|
71 |
+
width, height = resized.size
|
72 |
+
if width > 512:
|
73 |
+
width = 512
|
74 |
+
height = int(height / width * 512)
|
75 |
+
resized = resized.resize(size=(width, height))
|
76 |
+
|
77 |
+
if bytes_data is None:
|
78 |
+
st.markdown(f"[{str(image_id).zfill(12)}.jpg](http://images.cocodataset.org/val2017/{str(image_id).zfill(12)}.jpg)")
|
79 |
+
show = st.image(resized)
|
80 |
+
show.image(resized, '\n\nSelected Image')
|
81 |
+
resized.close()
|
82 |
+
|
83 |
+
# For newline
|
84 |
+
st.sidebar.write('\n')
|
85 |
+
|
86 |
+
with st.spinner('Generating image caption ...'):
|
87 |
+
|
88 |
+
caption = predict(image)
|
89 |
+
|
90 |
+
caption_en = caption
|
91 |
+
st.header(f'Predicted caption:\n\n')
|
92 |
+
st.subheader(caption_en)
|
93 |
+
|
94 |
+
st.sidebar.header("ViT-GPT2 predicts: ")
|
95 |
+
st.sidebar.write(f"{caption}")
|
96 |
+
|
97 |
+
image.close()
|
model.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os, shutil
|
3 |
+
import random
|
4 |
+
|
5 |
+
|
6 |
+
from PIL import Image
|
7 |
+
import jax
|
8 |
+
from transformers import FlaxVisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
|
11 |
+
|
12 |
+
# create target model directory
|
13 |
+
model_dir = './models/'
|
14 |
+
os.makedirs(model_dir, exist_ok=True)
|
15 |
+
|
16 |
+
files_to_download = [
|
17 |
+
"config.json",
|
18 |
+
"flax_model.msgpack",
|
19 |
+
"merges.txt",
|
20 |
+
"special_tokens_map.json",
|
21 |
+
"tokenizer.json",
|
22 |
+
"tokenizer_config.json",
|
23 |
+
"vocab.json",
|
24 |
+
"preprocessor_config.json",
|
25 |
+
]
|
26 |
+
|
27 |
+
# copy files from checkpoint hub:
|
28 |
+
for fn in files_to_download:
|
29 |
+
file_path = hf_hub_download("ydshieh/vit-gpt2-coco-en-ckpts", f"ckpt_epoch_3_step_6900/{fn}")
|
30 |
+
shutil.copyfile(file_path, os.path.join(model_dir, fn))
|
31 |
+
|
32 |
+
model = FlaxVisionEncoderDecoderModel.from_pretrained(model_dir)
|
33 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained(model_dir)
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
35 |
+
|
36 |
+
max_length = 16
|
37 |
+
num_beams = 4
|
38 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
39 |
+
|
40 |
+
|
41 |
+
@jax.jit
|
42 |
+
def generate(pixel_values):
|
43 |
+
output_ids = model.generate(pixel_values, **gen_kwargs).sequences
|
44 |
+
return output_ids
|
45 |
+
|
46 |
+
|
47 |
+
def predict(image):
|
48 |
+
|
49 |
+
if image.mode != "RGB":
|
50 |
+
image = image.convert(mode="RGB")
|
51 |
+
|
52 |
+
pixel_values = feature_extractor(images=image, return_tensors="np").pixel_values
|
53 |
+
|
54 |
+
output_ids = generate(pixel_values)
|
55 |
+
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
56 |
+
preds = [pred.strip() for pred in preds]
|
57 |
+
|
58 |
+
return preds[0]
|
59 |
+
|
60 |
+
|
61 |
+
def _compile():
|
62 |
+
|
63 |
+
image_path = 'samples/val_000000039769.jpg'
|
64 |
+
image = Image.open(image_path)
|
65 |
+
predict(image)
|
66 |
+
image.close()
|
67 |
+
|
68 |
+
|
69 |
+
_compile()
|
70 |
+
|
71 |
+
|
72 |
+
sample_dir = './samples/'
|
73 |
+
sample_image_ids = tuple(["None"] + [int(f.replace('COCO_val2017_', '').replace('.jpg', '')) for f in os.listdir(sample_dir) if f.startswith('COCO_val2017_')])
|
74 |
+
|
75 |
+
with open(os.path.join(sample_dir, "coco-val2017-img-ids.json"), "r", encoding="UTF-8") as fp:
|
76 |
+
coco_2017_val_image_ids = json.load(fp)
|
77 |
+
|
78 |
+
|
79 |
+
def get_random_image_id():
|
80 |
+
|
81 |
+
image_id = random.sample(coco_2017_val_image_ids, k=1)[0]
|
82 |
+
return image_id
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==0.84.1
|
2 |
+
Pillow
|
3 |
+
jax[cpu]
|
4 |
+
flax
|
5 |
+
transformers
|
6 |
+
huggingface_hub
|
7 |
+
googletrans==4.0.0-rc1
|
8 |
+
protobuf==3.20
|
samples/COCO_val2017_000000006771.jpg
ADDED
samples/COCO_val2017_000000021903.jpg
ADDED
samples/COCO_val2017_000000030213.jpg
ADDED
samples/COCO_val2017_000000039956.jpg
ADDED
samples/COCO_val2017_000000045472.jpg
ADDED
samples/COCO_val2017_000000053505.jpg
ADDED
samples/COCO_val2017_000000057597.jpg
ADDED
samples/COCO_val2017_000000059386.jpg
ADDED
samples/COCO_val2017_000000067406.jpg
ADDED
samples/COCO_val2017_000000069795.jpg
ADDED
samples/COCO_val2017_000000084431.jpg
ADDED
samples/COCO_val2017_000000088432.jpg
ADDED
samples/COCO_val2017_000000100238.jpg
ADDED
samples/COCO_val2017_000000104619.jpg
ADDED
samples/COCO_val2017_000000104803.jpg
ADDED
samples/COCO_val2017_000000124442.jpg
ADDED
samples/COCO_val2017_000000125936.jpg
ADDED
samples/COCO_val2017_000000132703.jpg
ADDED
samples/COCO_val2017_000000146155.jpg
ADDED
samples/COCO_val2017_000000149770.jpg
ADDED
samples/COCO_val2017_000000152120.jpg
ADDED
samples/COCO_val2017_000000154431.jpg
ADDED
samples/COCO_val2017_000000161609.jpg
ADDED
samples/COCO_val2017_000000163258.jpg
ADDED
samples/COCO_val2017_000000168593.jpg
ADDED
samples/COCO_val2017_000000170116.jpg
ADDED
samples/COCO_val2017_000000172330.jpg
ADDED
samples/COCO_val2017_000000173371.jpg
ADDED
samples/COCO_val2017_000000175535.jpg
ADDED
samples/COCO_val2017_000000178469.jpg
ADDED
samples/COCO_val2017_000000180188.jpg
ADDED
samples/COCO_val2017_000000180296.jpg
ADDED
samples/COCO_val2017_000000181969.jpg
ADDED
samples/COCO_val2017_000000190676.jpg
ADDED
samples/COCO_val2017_000000199055.jpg
ADDED
samples/COCO_val2017_000000204186.jpg
ADDED
samples/COCO_val2017_000000213547.jpg
ADDED
samples/COCO_val2017_000000216497.jpg
ADDED
samples/COCO_val2017_000000216739.jpg
ADDED
samples/COCO_val2017_000000224675.jpg
ADDED
samples/COCO_val2017_000000226903.jpg
ADDED
samples/COCO_val2017_000000230983.jpg
ADDED
samples/COCO_val2017_000000232684.jpg
ADDED
samples/COCO_val2017_000000234757.jpg
ADDED
samples/COCO_val2017_000000256195.jpg
ADDED
samples/COCO_val2017_000000266409.jpg
ADDED
samples/COCO_val2017_000000267946.jpg
ADDED