asvs's picture
somewhat working commit of people counter
d1424b3
import cv2
import numpy as np
from ultralytics import YOLO
from collections import defaultdict
import argparse
class PersonCounter:
def __init__(self, line_position=0.5):
"""Initialize person counter.
Args:
line_position (float): Virtual line position as fraction of frame height (0-1)
"""
self.model = YOLO("yolov8n.pt") # Load pretrained YOLOv8 model
self.tracker = defaultdict(list) # Track object IDs
self.crossed_ids = set() # Store IDs that have crossed the line
self.line_position = line_position
self.count = 0
def _calculate_center(self, box):
"""Calculate center point of detection box."""
x1, y1, x2, y2 = box
return (x1 + x2) / 2, (y1 + y2) / 2
def process_frame(self, frame):
"""Process a single frame and update count.
Args:
frame: Input frame from video
Returns:
frame: Annotated frame
count: Current count of people who entered
"""
height, width = frame.shape[:2]
line_y = int(height * self.line_position)
# Draw counting line
cv2.line(frame, (0, line_y), (width, line_y), (0, 255, 0), 2)
# Run detection and tracking
results = self.model.track(frame, persist=True, classes=[0]) # class 0 is person
if results[0].boxes.id is not None:
boxes = results[0].boxes.xyxy.cpu().numpy()
track_ids = results[0].boxes.id.cpu().numpy().astype(int)
# Process each detection
for box, track_id in zip(boxes, track_ids):
# Draw bounding box
cv2.rectangle(frame, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),
(255, 0, 0), 2)
# Get center point of the bottom edge of the box (feet position)
center_x = (box[0] + box[2]) / 2
feet_y = box[3] # Bottom of the bounding box
# Draw tracking point
cv2.circle(frame, (int(center_x), int(feet_y)), 5, (0, 255, 255), -1)
# Store tracking history
if track_id in self.tracker:
prev_y = self.tracker[track_id][-1]
# Check if person has crossed the line (moving down)
if prev_y < line_y and feet_y >= line_y and track_id not in self.crossed_ids:
self.crossed_ids.add(track_id)
self.count += 1
# Draw crossing indicator
cv2.circle(frame, (int(center_x), int(line_y)), 8, (0, 0, 255), -1)
# Update tracking history
self.tracker[track_id] = [feet_y] # Only store current position
# Draw count with bigger font and background
count_text = f"Count: {self.count}"
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1.5
thickness = 3
(text_width, text_height), _ = cv2.getTextSize(count_text, font, font_scale, thickness)
# Draw background rectangle
cv2.rectangle(frame, (10, 10), (20 + text_width, 20 + text_height),
(0, 0, 0), -1)
# Draw text
cv2.putText(frame, count_text, (15, 15 + text_height),
font, font_scale, (0, 255, 0), thickness)
return frame, self.count
def main():
parser = argparse.ArgumentParser(description='Count people entering through a line in video.')
parser.add_argument('video_path', help='Path to input video file')
parser.add_argument('--line-position', type=float, default=0.5,
help='Position of counting line (0-1, fraction of frame height)')
parser.add_argument('--output', default='result.mp4', help='Path to output video file (default: result.mp4)')
args = parser.parse_args()
# Initialize video capture
cap = cv2.VideoCapture(args.video_path)
if not cap.isOpened():
print(f"Error: Could not open video at {args.video_path}")
return
# Get video properties
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
# Initialize video writer
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = cv2.VideoWriter(args.output, fourcc, fps, (width, height))
# Initialize person counter
counter = PersonCounter(line_position=args.line_position)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Process frame
processed_frame, count = counter.process_frame(frame)
# Display frame
cv2.imshow('Frame', processed_frame)
# Write processed frame to output video
writer.write(processed_frame)
# Break on 'q' press
if cv2.waitKey(1) & 0xFF == ord('q'):
break
print(f"Final count: {counter.count}")
# Clean up
cap.release()
writer.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
main()