asquirous commited on
Commit
82240d2
1 Parent(s): e9989e5

Add everything

Browse files
Files changed (6) hide show
  1. app.ipynb +411 -0
  2. app.py +29 -0
  3. cat.jpeg +0 -0
  4. dog.jpeg +0 -0
  5. model.pkl +3 -0
  6. ooconfuse.jpeg +0 -0
app.ipynb ADDED
@@ -0,0 +1,411 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "id": "6c6b9b04",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "#|default_exp app"
11
+ ]
12
+ },
13
+ {
14
+ "cell_type": "markdown",
15
+ "id": "f50869b0",
16
+ "metadata": {},
17
+ "source": [
18
+ "# Dogs vs cats"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "code",
23
+ "execution_count": 2,
24
+ "id": "acbde237",
25
+ "metadata": {},
26
+ "outputs": [],
27
+ "source": [
28
+ "#|export\n",
29
+ "from fastai.vision.all import *\n",
30
+ "import gradio as gr\n",
31
+ "\n",
32
+ "def is_cat(x):\n",
33
+ " return x[0].isupper()"
34
+ ]
35
+ },
36
+ {
37
+ "cell_type": "code",
38
+ "execution_count": 3,
39
+ "id": "80b17561",
40
+ "metadata": {},
41
+ "outputs": [
42
+ {
43
+ "data": {
44
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAMAAAAC/CAIAAAAnykREAADP70lEQVR4nNT9Wa8sW3ImiH1mtpa7R8Te+0x3zEwyB5LJrInNagkltLrRjW7pQdB/0o8RIEBPQgsaHvqhBAgtFRqoLqImsqpYSWaSzLzzGfYU4e5rmX16WO6xY5+9z70nWVlCt9+LQGw/Hj6sZW72mdlntuT//I//D3hsE5HTT4JOPjymHfDwh29tXH97+pO283TPW1+WPwlZj3zX+b99Oz3tes70LYcdNyUs3j4sInh/KCgA9MGBj2+qCoDk6UlEpP15/CRIubsQT0bg7piTnaf733Xpt374jiMpDEg8esK3bhJA+pb5uD9hjxz4m87l6fFtyN7a852/fShqv9HV734l0ab9rSMe+9mDHSp4MPLx+I+/436+ZbLXjQ++HL9z/fIbD8V7bHzw2SRG2p9ktOs+8iK+a3tPZfM+U/tQlzz8fk9t/OaX+O67kocK9ZHppDycH96fTki7x4cS+W3bojzeKUJCCnmcvPZF7r4Tx39dxOjkDz4mVe1SXO/+rSsfhUMglAcCtMp6NO3TvuM7NdDJLILvJ0Dfvj1qht4yhW9ZTxBv6cD/8OuK6LuOubcHkEcE6HFx/E5l0jaukrBMyfpxFAsAq+i83ymFJ9PftgD0/s+lzff9Y05/QkDbTq5ne4cQnX6+hwlbvsgjGv7b4c67TvhtsvJ+R77r0t++/a0h1KPnOd0ozbC937YAiKMRb/t4OlNgUPge8tPE4i2L1j790WvfP/It2Obr0zwuu3ECyI6z/N0m7AQD/e010HfCnW+Vlbetzd9aCE5++AjkfaiWBIC+lx4Q4XtaMEbgvr7BiT06fgoRwljvk6vJOz3mZCcfnvORS9//4buOFKDJ0Olh0WS6ybrc/fZxZ+TUaVq/vKc+fXx7xA96/x+uBv0/RIW8P1o/3fhAdt912PvjH5Gmfu4+33FOPpzgxya+aYs4NTrNhN07jHKEL6t6eZcJUyDIxd6del0nR949bVqf6p4vHRGnO+UEXp7O4qPW6q1/enjMURudTuSj/mr7VBEVfZ9LP7o9vApJfczgPHrOeA/JOL5u73XC+G4PGUAwQoK4v9MfixXQV4hyPJKAr1CFj10ND4A2V2voQiLiFPZ8y32m072/6dz8z3c7wRy/jbNBwOD7CdCdHXnwjt1734UkGxJaPtufjz0M1rO9JXB3F5L2b2/9PO7LUDQXjKBI+x0hwoijqmyOPE/egfQ/fdHhI0/+G/38HWryfYwTEO9zaQrfMhntt3xEYTyMxT26n8JYA4lcPbemvR65R4llattQ6RqmacIny58kl6dutplyFw87+VPAxYQJyFg+201icdEWoXxLA+G34aT8R9h44rPIW+HXv/UJ30cDvRUv/pYtwIdeajwG1e9wzPHFIO7taeomeAdavw0SEOJowPb4VA1eIQhZdO3y59HcyqpMVkN2+ue9s3E9/N6XOxB9nI/f3vT8R9mOt/eb3ttjEkDI+2mW9xMgAiF8iIcfN2FHHfOtJuxuzh77yaN3ev9Ux6gP7/+Jky98dOdJqPFb7xAgeaeB/icoNHfbqjb/djL0ju27k1cUvqcJe3z3twrQWwec7Fm/6gpuVpOxRhffAr8geAxSH1XM8Z+P5ibe42XAvcDFu5TfnSgn3o2jnNyZ3N8j9//H/We4txEtCEYewxOLMUZzoggIRAB5+3LAI9FKAAiELD6n3X9vZB3Qh3/Kcpg8POa9QRXbnGhLLgLNOhz/DesQH13o0/jvil3vNpHVeZbln4MLHLkbJCLa56rSiCUwAyCafTt5hAZrVlR73zTfKS0ehe/k0fBgGtlGW+4C5Ueb+5YSWkxbpBBfXug2tSIAIghAVZsnT0BggLaY6/HKj0T5hcFw+hI3Wg9nBNfjZQ0PaOhyHjk1mo++XivCkGgywbuDH4rCvZ0iirfGDnwUQT+iMETXZ2xAdJn1dYSbfCFAgcUiqScnkbcFCKCuDyWLTm33swKPJluIpv6OCOUotcd/bbE94DSFx2MwaJUbnv4pJ4+57pFT/+kOz8DeSsM9+BOQID21gTjO39EALwffG16KtCeX9vlwDrBAgQdIT05Pezz1+6mBt+b+nf/0nse850WP21v6LB6IxelzfcelH7v2o7jkwS0sonn/f+G7z3D8PFFja/Lk+PngNo4vJt99Y6dn5m/khfEUhbwL0L0nLeb+3fxH3N5xn+8vu4vtONkZJ/96/Bbkg0zIbwWryVvTzGXn32rkTqfv3bf3lir9FjF9Xy+smdk46p7T1Mz9rdnjh1IU651hNWyP5MP/Y2zvL0DvGFDeey9PZaZ9aqyW/eFTP3rC937wt0XnuP/oUp2O6nuc78TO/LYif/e8sHdLZbtXkgohaBAKjkpI7sc031MHxQIJ/ueyyaknfKrqGx56JBL9H6CBeAfbgRMmxjEAwUffgffcflvhNAjTWyf6FhkKBhQ48oLkFETfoYS7cOe9Wz7BQHLniCzDJPK497X++Dfkav0WN96hgbtpkxWUtHld1cC7nvre+X6jB7lvR1Z8eWLIcDLy3729Zb++Jar03iaM6aEqI2lmb+8EVKVhYZHAygloztjyrX0+5uA0IvDxMYB3WvHHnsrkwR2+f1b/8fC/PLLzUZKJiJBxCjzJWKWKy90oT/zTx5/lraf+jlm84yDweF0sbyYXit3xjO+NOt+yM8erPwhHLe/KejM8fZo7p0yIYyDxXZNx5/0LxJpDT1CgFAoZgWPY4uTzwXYqQG9d4T32BKRFEB6JvP0Wt4cnPI51k8JYcgMO4p6lXgb8nQJ0f3gJPDJzb/1yTTAQLQYi0SJrsqJHWT9+Izj91hUfleB3n/Ce7mk+5eOEsrcUnYhA4kSVr9xHWU8nsSh24aPcznfEZPUx0/k+IvX/z+1YGnGndcgj36+xwwQUPkYCXB9KWjpvzXPqowJ0slNIEn4yvMDx1efdpe9Cbb/NTU6Ijnd3h8VzOkl2fAsj8S0ZWl4JOXmeY/ZHTj5/w+30HX33S8lH34r3NGH/YV7YMWbPNclwJFvhnj8v8ah79eABj0/Jx/71JM5LLlK0VNi8NaOnl/5NodV3bo9P5RHtnLz2/k4NdPzNcQT9gVQ+quvkoTcCPPaW6Cl+P40mPLjvx5/nt27C3rEdJzuOLwnJO89IFtvyqAbC8oCLXhYBqQ8F6OS066eQcNy97jw5+DRRKoD9lp/4nU/xtlrBo/V1p9tdwGCRnrfV2mOz+Aj79eHLTTiEYBOj04D6QyCC39DQv32Lj+5+uOtbNNDqWjYNdHKTd7HgRzDQ6Q0sDxhEBOSeCXuYTFguceROHHPpd9kS+U2DQL/JxsfmWrCkX3DnUrxLgB7RQJT7WvSdGPAI7h494elhQQhCRNY8c7vc206F/McPOb5TOBdGDu40wdERu/9TIviO+7x7dyGQ5mYs29u3cU8tCaOp31ZqE+tbxBOPt53/PaSIx+Pfirxw3fnWaR/Mwgrqj8yi9tvHy3oeyfsTDDkOx5JV5gqG7u4JgMgDk3xMo2LRNov70P6+uxgfoWWRYHBxbJervyNudP8lXtHbI/owECu6bQhCAPjDECgZ62tDrBpoMdLH2CmlUaffKYbHWwghBMqVmLH+ovlZKy12YaGyJe+bWyvN8L2t+UChqK9W4u5hGxmSxyMNCGFj/99Ji55CN4YsZDZ5WxkLFqERcMngtukTSe+aidNTiEgA4kLRZdC03UrLHx/Dpg1n68MsvZxk748Z4Ecu++heWf7pKH/HnY/+/jvJcZSASEhIkx452qFHrs9Tph/ajLWvenxNv9268vQQnhR9ytE8rxruhPgHAlQBSV1efsRdxdaqpBaGKnx1ao4nfwtaC1SEes9CCAAjCVJgLcdAhMCoCx3yOPoiwgihCuIuBAhNj/oOp1O1TkAQuu5ZVKLwVLWebg/PKfc/3+WxP7qd3sZvbTuC/e86rwiMpKz+vNzRg+xED72fOy0iq0v/LVJOUlVadlbkGDWQE+izXloIaQwRFcSq1gIrG+t4YQD66HiLHCE6F/ddhNoo0sLmAiy2QaCgLF6AgIzHMdDdyK5PprAQUYJCJagNB0ZDVCGqKxvqgf4D3ltS3rUdVdaqfh6fqoeeAh4HampgPCgVemxb4E7znlaIxiWFJycVxMeX+7s31UXfCE6DwneGcvlswVcyIEYSosFYtXs0bh2btWg5JiqW8kZ7CCUBPX2xT/HOHfyRZmIYVICg6XqwoGkpACp3OiPSO3xkWf5r4S+BQKXZRkJlQT+rOV2c1IUKKY/ViXMxnOvdrDf+fttyC0fB+dYfHqekhY8fBsHZdP6SDblT6Q8tLxECXUJ7CwgzHH34BjyWB3ovAZKW9uOCdE4ufFQYBCBLzvFY/bDYJkG8FSwQAWmUJZZwdG4exj6EUDkmf1s2YbmkgSG0lcgfuBsyWZ9SRXCCfoDm+dT0EPAuc8ATxEpQVChN+taxJqFgENCj5gOU8chQ8virZRCPO7970OV4P+u9vcMBvBOwd6Cf46BAVHkC7d9xJ7K8yqszfxeAafcvK5SR9zRhslgHyJoVa96Zqt7TQC3Zh8XQtnBiowmvFdQrtBchNI4l9ncS94jbq4xTuKdcsT+JFngCQbaxuSN9EgB0QfNYE6FQUgLpseYTb2NeLHDNhEKBtcJtWb06HoHocdre1p/xqAZ6v60pv7dgGR+VoRNI8V1hxub83sH5R6WN5Kr2HWh26jROaqsiwXuyfBY35EHx+HEWjsZ30Y8gGSLSBjro6+A1bjiFEkh6HIyGTPgQlUIgeieiq1isiFxXkYIIXanCU8xESOuLRKzIvQVPmY4dBdY7Pg7ccRDbv8LEGmoWNAchIsAmuUfILvTV770/5XZ6wuPoPRxinsCCu2En34qBishD2+QR93Dju3WVvqULH7NfbdxORX/R5iuJ/e6o+/f/lnDc25Yy7fd4gygRdy+DCBopYImANPCzjDOE6dQj4Ops3790LKZuvb3jMPL+FtLQ0j2ytTYEvKpJERAhKkcQfaoX3gLwbdOTO1xHch29ezsplFMh+M38p2MYrX3+tn2vZZPjf0cE8uhRwGqwmrDGgiaX44/Bizuf5/ibb7v4+wnQYsMWsn2IKO7gpTcQAkAfcFMefSKF6IrbEQxZ3yLiqJMcj2SiTlOdsoaiJahQgkkWX3GJB7fvD8VXl/ttMYMVRjV0eUftOZYs2BH0fAvCeHTTI3JfP5fHuL9HH552DUu931X00au8tZFNRR3FQ1cNJOufOILf1fGRY0DvMcHU99VAIkuIrSXbRNFMWJuvtpPR2jM+Gol5ewfFoCRUFjeywa8VD4BsdnEJNBzfh8XYHZ2Ne0oeafVEuGoMAagPOuU0ARKCEnpH++FCC2plF2v9DOXuVH8bDfKWDVtPdbL/sbM+XqvzDirSYpdWBPLIgC+XRjSPvT2VrzJ05CPg6PioriC2ke+Ihz1ACAH0/YgLIg20LIkDx+LPtOstTRnlHdX7j/U6EmUTl7VJQ4OBXDMrQsaauV3N1xKdOQpQACrwWPWHpDW0LCeA4FET1tyr1WNfkNHCjrPlRwvnYyUH4RRgvc+YATiGOk6zH8c7PO5/5AZ/E1EV0VMpfae/RuUyTYRyha5HG8QVZzIimlrEOsVH0TzdlIuH/h73aNJcfgokSENDNrTWWFGaFwwI/eH5Hr41QjXghEzaTrGUSDSt2WSp+dWnHo8c83zNEdOFaCISSyR6cZXXd/Ex4Hmv1rp9PwnLrFa4xRLFHoCY953eB9Mq6yvxbTP9m27tTfxOEwbIChV48uw8MWR3o3E0W0cP8bF7leM4f/ctMjXoQ4pIi2eyRaVlyeevwvoI5HhgwmQRtyNn9OivPLjuPSfueLuymk5iqfSkIGmjynNBXgqNprXXd4xCXYox8ODFPw7iigYIgaJ5jMsLKTglu96d9p0j9+DzpHajKVJRUh7cDAJCcZwOqITIabT9TnkcScxrN0JZ4MCyrZbrpP+znGDlxcVbn0QEgB+d6dVpWp9WjtO8ItLvUELLAxvEW5BkvfQxZo1VE3wXxDw+JyghXAqzgsfYy9283j+Tvn2eNYC4BKSARueY0JgGi38ox54fTQYo0EZJfitLKhLV10j/YrAIUKgIAVrwpjWfNNMFKdy5oI83/1p14UnI5zS7T23PKaqy5mQaN43AWjYKuUs9I6I2PIElCmNAFJSlYntxcQCoqQnX2H1ABI5So4iKqZqaqalqBEiaJlWBs3gtNdQMmpoyVkbzQ1ewcwRcjRZcQbsbyAUwvjVbCkLoCw2Bvr5JJFvGIgLRKOlLuffyBrQhOu3YuBqW9nbLki+LxfdZY6TtEFlCQSBWqtYawxM1yH0yLqmaBH70mJYXaQHlUJFFKBBAeggIlwKBE0Og0l63OIbCTp/jRAH9ZhtPfk5pBq3Nf4tN6BqOWuH23e/WF0dkqe1vkoTaQK5qSmoqCWQtbo3fIq0tgDpVQKg2mQwhg/M0RzClSGaqSoiqLhnN5Qn1LvDY4DaxgMflTo6HHu/26PSsYAMrg4Kr94v7Hra0F7+9hqvCvkvJ3VPhTRrWeo4lHthaR50USAsQ0Xxr3r8SgJWysqZWpFnD1OIMKzJdIeNKG2mz1CzfQ2x9EkU9mn8SQrnj66yqHqefv5EAHRGcrH8CbKHZlhleR+S0IcAqYMujrkqs4Q8K3ACGQETCREWS5aHPDCFB9xZQM+lTyssoL8aCvVkYVRWCIIMSpJIia8+D46ydwJTVZBLxltFZAfEiPTzubco2Gu5FS2OsN3GHKE4DN4plPB5QDdosxJJ6QrTcFGJJYK4ZBSyvwapkjv+12I4sz8HV9DGShCxSIwtYOfYbOQmyywIA7mshrtjppNJkAZ2yaNRTHfS33k5ehzXMKEdIsWZwsDKTl9tYccLJpwImoRDs+gt3r7XCiTBoYqQyry1owpqKU4iGyonfSzDUo1mX8PaqqoigysJsOfHtF4R0NE9NEb3VT0dwN65+FKBF8SwMrsVLOgVtR29cTq0V1yc9herrzPkdYOKxe9lytaCsxcJscouFPLmq0OUCsf6CoDASj9r0DlWtuGo1CE00705zMh5Hu3cElWv0+bclPXeXOvkiJ38u/wthRAvMRsvkLLo5wDagplSBCA0lsSJKhEcyQUqaUpe6lFLXdUO36boupbztNps8zNO8H2/3+/1+uh3LPPkYXoIMadCgswSGr7Txu7s9Tg9OvgTryZ+LeMm9Z2z/JqsqWFrltU8ew35y9PtOXAwedf+6c5Ue4o4udIJjllTJ8U8c5/+U47bUOTY295HqD4on5SIaa0QRd6fGXU7eyXgQWmC7/MkoLQFTWcNKy//rLZ7M+ftvsuIHQJZ4wVKZqYsaalZBVlX1VqELFVBhBk1gCgM1WRYmlZw63W62281us9lst9uk1nVdn7qcc87ZPKGAhqfbWp+WyhISlzeX1/vrsRxux9upzDWcXleM3CCFrGbrOCWrPpCIkwTI3SjesUEWtoay0VnXqboPgBYTJlwcgEUKRRpT9E7vylEVaTiBxudfp2yZs/tEgMUEtyqUowyp6PpnHHcSnu6CAUuDqVUWjhe4m8cHU3sf6DQfgLKuZyN3/8R2S+uA8V1nPDnn24N1T+p4fE9OAcUKGiAAA40LqqIRIlCDokrStNucPzl/Fg4R6bvubLs7Pz/PKc3zjCBJqai1lP2ss6bIIhoaOWdVg8T5xxcF9fLq1eXNm5vb66vbm5vDFVFzJwwhQ+1BLmiJDQlwN313z/fYWNyFa9ZBIAhhw1AkV2N5/5cPBu/4LaTxFNvlGdJasi5WO0A90isbO7uR4Hm0aCQgS88/EtECnCl0dcFVjpL0MDbAxWzeE5pj2fkxSQ6B6B0I4hpoD95b+mqJ96/RlIefR6VKErJADa6vrYBYWp7ZqbvfnivEY4G3JDSbIZhTzuiK+5PtxQ+//yPVLGKmlkxVVKuEuwbmqdAj56QiXn2+9Y59kCXKxcV5QQ1UU3jMWvni/PlHz1+8ub78/Mtff/7Nm5y7cK9eN3lbw2OhYSxc9Vjy+rEYlZO3q83v/ep6WWd96bIbLUQsJBgIwsmFDrHGr+QIHNA6YdydSppQRGuxIitAbv5gLPLaIJes0obFgY9ggLEmMxhwMoIBiEJSHE0Vljzr+m7f26KVFEAQIbqYbd63o8sn2DI1y0OdxBJau+JFkkisVRNyQipoX44yBJCM0Fgps7IKkFBEpbFKFUGRRtRChLhwDdzi9na/63YZedD+g2fnT3dPtIh76Qbb9EOXMxlRq3sRdwsCkSJEJGox0EB6jTLfXL0uXkLCfRKDIFTVVJ4Mu82nvwtOb/avGMxpAFWEXgtUAI8ILmnnaIBCFpDfFHWcoOkj4qatrjSDgQgEhN7UD4KBaFMLCKu01gWnODbWd+0OEnm0dPtigI55vUVmKNo+jyin6R4uDfNDJEiSTgQbtV4tBdFCfi02sPSZ4BKIOjplIUsAC82On4CvUw0kKhEB5SKMdxAqVvXN5dyrZ7MI6KrMjusBHgXIEUHHOh7LDDTc0JQiElqQh1RqgG2dgAiVkGksW42+755tLj68+GCXdrXGxLAIlOLu7vM8TbUURrhXFcCM4DiOhm6z6UTo4eO4n8scwlrH3FnuO3pE0aHPF09fHMrNzS9v3JlyF+6i4k6BtwkIeJCU9tbaEjm56xwqqwN1zwLpgpOj6W8KuWgROFs4M7hyBwUu0NZVXkSXxuPA6WkJX7yo5VX2xelZZtmPnwt4lztz2WCwtDonLgItgeRYcqANtpicVo0tmkIbTGW0sPIRaR9lSO46ly1qb925mqSI08WCYlVCD43XUXSOnyFeta431CB/Q51sjWaWEaQaxMkQBNDUvTKyZQkdUv/i7NmZbVLVDN2eZ4eX+bAf5zKP0zySkVQYripIiYxxvzfp+mRd1w+ipRZgVmK8PfikGttQnUkOfRY531xsNufVA1T3KkYQERGooU56iAcDVDK12gYRAdcY9NuQYcHWbf6iTRgRjGCErDsbd8+P4XulqoiASwsHAKtia++mL8jprjnsXQb4KMuAEIam9pZUQwSDcGkRcATpBIxMvgQV0V5qPKaB7iKTD0zbne5Zed1sk36fPXiKlo56K9AC64vtPtVnp58uXuALPF/dxyUCzBZ9X7gkAVFotBet0W+pw2a7687Ohl2G1cOMqVrWqmX0UuZpnqdSZvcq9BoBMJtozh51Hm8P+3J1+fLDDz/a7XbVx6hTkON+75oTJKVEcq5+E56ebp89eVFKjONtRHBpBxPUCHpIDTolABPa6kic0InuBvbouK3BHzIatgeD3gzYkspogxl+8gaaiK4JBz/xRRUIZ71z6xhN+8R6G6ui0CW+L2sYi8FG5qc3MWodJpq7lHz1AlQErWhsCSgv0stjGOH+dho/uBOXNuXHG+dSWhD3ZeLuvbh32uaYHhdVXM7vwkpfvIA4CqktEitNb4NAuC5AWiRaK4Rg1/UfPPvwfDibb6YoAPM0+es310VcwDqP+8N+Gg9ea5eTgjlrzrnWehgPX3/zciq1sH7y8cc3N5fjNEWNaRz7bui6lG2bLRmkTkVLPL14fnV9e3X1JiQI1yTVm/LwgBN15eTHOipt3Fav/hiqPgrQ+r4tgUQ4CV/kJrj0TnZKBXAkqIBL/dWJBmrna0JwhKDH666QtIFXYC2m5HGDtJ4ksUQ1ly2Ckrgma0JCWgDn6B3LmkoXgI38syRbRdqyHEvoqEUpFq24DE8zaqsDz0bzYYB3uH/xHO5IBSIIBtrnEnyl06mzRyCCUEWz8SbVRLQxUkSMAuugGgytBVJUo+vYbfunG7ngrFc3rzlOKXg77r+8vtqdbYXhXqKWaRxVWEapZe76brM7OxymX/36V/s5vnl9VXVHye0d93AKg9W9qmjuB6+x3x+6wZ5/78Xrb+xrToFprhPFQ8OlcokPKUIE0irEG3jlMsAtgaAnILpVoS5RXq5Nipw1UEm2IPgysK0rd5MbaVTVNu7KxXbIMsPiPCo8WfzDhaUmXDJ3DJEQ+HpcQGJlWfLYY4MLxpIE8cX23ifWypoibY8obL6drGmlhm/0qCNbE5s1oNT2yhqrYLTAA2LFkgBQF3YV74IDbG5l8xVJkuKOCHFnCS8ATHO2jlHJZOgAiqiKQQkrobVMKHtJ8+5iePLi7IPvf/j9jVlMe1WZMb2++eb1m9dPnn8v53R9eQmfzQRR20OVUjV1r97cEtptnv7NV1/82Z9/8Yu/fvn6zeHv/ewnHzx7onLYbPo2s5MXlDqVeH29P8/VXvn5Nl+c9W/mW8bkUqt4SJAt1apCa1R5QQisVcrIgv5XF+w4oMrAEv4h28o9EXTCSac4oymDONb6iDTe9LGsSrHqrja4oic1ZVwqG+PtmFUVSUulM1beu3CJ0shaAtgwmkjCo2uYLSEBgcpaJitLJGB1v+/yJEcBAgDRlbzDRY81GYL4kqlcHDHipObhXhZ9efNaZKJBMI92hWYjGyX8xPFtaxqJIQvVku2GfHb2/NNn3//42afPt099nG7mA5NtL84R45s3rz/79d+Ec7sZtpue1WMu4zxayrDkgYtnL7a78z//+V9c3463t/vxIG/eXN/e7reb3CsuLs4FmEafxsldoHm72/7Zv/nTv/jv/v1/8V//58OwxeGNikWbHG1MmDW4Rayq3dHAUIMay6SfLEZOxFKGztVmBe6c0zWys8Yn16ldMCUA0kHl8dJvc1+blnqkCHTVDycdSFbkemfUFmcoEh+e4Dj/Avri5gnWNL+IBNmoTM0srXD7yFm8c0ebpBzhYLsVWb4G4+jns8nMiSO23uiag45j4dsif2/fLvXMdufnZxe7p2fprMOwlWGXE+eb6ebq6s1X081112kn+aNnH4pcufuLZ08P+9uvv/xiHA9B9pvd8w8/fvHhJy7p//b/+O/+j/+n//ZHP/rksC+Xb16hHrZ9ZPm9H/7ge+fn54xI5k6qdpp6TekPf/r3C3Bx8dEY+3j5tUdRSwhB+DpHx7s/Yuejd42VvHSX1YpoJihIJ51syc9YB2etlSAem8EVa94hHgJro5i3Dn3w81XMebfjOCEnwKhJUWJUvGs7BqaBgLXAcYM4EqspX7yi05+tGkjWax8Do82hWFadBcMVK41nReWqygYIVuWNpZhYWygTbE1P+BZjXaDlAE3dbrc7SzurHvub23Ldie0vr25ff/3qm5d1np6/eP7hxx9fXDx59ea10Ofxttay2Wyqeykull++vvxv/+//z//L//X//envPP3+D35nf73/4td//ctf/Pt/8Hd/Avx4nsbxcBiG4fziTK1T6UJMzC4++vTF9343pM4cX98evnj962k6QAKilFiX+HBSm1JRXWLnoOO4XtxpWhQt7MK1qV77gtPUzT3pWGIiivsAeZ1prALx3QIUS8z4RAO1mVjIQut3ANAE99MTCBArTbpZuUDLFwhUeeJwSXNTj3d0VDrSst8Al9QxwJXWtlin5iG0GCvu3Pg7Z/6eBgpt8J1HYAmuFuzOoZPAgI2Vbr6sN1evMY9aaw+8ubp+9fU3l2+uv/n69edffPXhhx//p3l4ffPN9e2Vl8qIoUvTNF/vD9ptXr96/Y//+3/yb/7dX/z+H/7g8qb8m3/788Pl608+evGTH//O7/7g+08uLgAe9nsG7SIn1fAoQbh8880Xl4fDV19/mXdJh3yx/YQ2f/nmc2KmFCqACiHEvY0sISeUzFgqzk7z1cehaD68rw2+dIU+aEy6+0WEp5NJUE8wkOBuBaBvEyDoOzXQycws4piwOtXHi68KZAFZS5Cw5dHuul60tEm8Ld8tPHmMG0nL/50kPhciWLuXY9dBaYKy9qO4k8cmQ6AxGOFLErrhel3iZ0KIEs6nu2fPumfmdb5+vb/6xsebTH/z6uWXv/5SpYuKq1dvJGx/e/jys8+2Z5syjbXW6vXlqzchtu02/+Jf/es//dM/21w8/+TDT29//sVHH178L/7r/+KTTz8s037IeX91XbMgzkGapfFQ96MXZ+rOfvXl6//+f/in+8O1DfbJ9z/qzpJm3zw5n+JmcaV0CeQoW9KgGf8lYOaLzjjFo7oAvjUYRIa2GmZZR2yRsFO1dF8aFqtzuuu+3sZDicJq6e5R7h+82MuUJl1y6O1W13tXXSJDWNNz7cRLIcYRefFUo67pr6NJWv5otWPOJQvU3AeA1ad2/nVdKaz9IpeMYPtfRFrg1pIuRMSFQyKqimCwJtG+61CggjrN6oF5nq+vpjK++erL119/EZEgfdd1Kfeff/HlOE6iUatP01RrbbP42a9//dVXX//BT//g2cc/ePbBR/+b/+Z/e7Edzruk4l4O2VDrrJDLyzfzXG7242EslYlI17e//n/9f//kX/7bfz+XaZonzdAM5Pp7f/i7/+h//cebsw5Z92UW9d35ZjqUFgo6BbCrdjnCQYjYsXR9tfC6dmhcXKGGHtVOp0BPZGv1mk+M3okotOMfqZtbpvuuvxvXyCG5Nkm6M2HW0pMkW81QLHUVbeYXWvQd641HoW13scShHlTQCbBkdk8Yry2K2d6KdlvrSK3mWQJIx7ekGU7QKUFVwPT+Si7arEE4jF2y6XBbsSnjbb25nG9vNVjmeX91s98f3GWu+33BcP6sRP3RT3786vXXr19/+dVXX13d3JRaodn67YcffvjR937w5INPaR2B8XDg7fz82fmTpxf72+vLNy+7JH0/jId5d34xbC/2V/s/+zd/+ud/8as/+dd/8fp2urq63B/2U537IeWN/fN/9vPf+72f/OyDH9+UV0mV0MP+sJaT3+nu9nIe+Wg8DrLk478eaTZczJ+sXI6W2j6e6uib3n1/yzVZQcii3R8pQRSc+tensPkIy1cpR9LVuQHvOqitBHs5flm9PmC1XkALFi5E0pXbzZNQxhqgWlltd0/G1e1SNI15F0hdHgCtLxiggpDQpTBqNbAKVUKXloUr0PIZmMt0+8UXvy5Xry+GvL+6/eKzLw5ToeRX1wfmzfbJ2XC++/zLr7755svPP/v88vKNmp2fXeRh2M++Gbrw+vqbr67HMs/12W7z937vx9//9KNpuv38Vy9vr1+fn+/GceyGbbfZjm/efPnlm7/5m1/9yZ/8s7/47PXN7O6BgIiWkRGulCebD77/6Q///BeXXdpqLlf7y75Pd/b9GLlYkfKdADUCz4NthYlrLykhHzvs8Y0qq3e2ype85QGtr/H7bumIRZ240zQL5W99zDVZxvXBmwzdce/WGth7j7qeeWWWkkvA5lgpcvz1icoRWQNWshCTxFpM8wjs7wb57lUjxFMXpd5e3766vHw1vnmt5xfjfr4di0h6eXn1+as3P/nZ3z17/uSvvvj19euXZZ409x998ulut3vy5Enf92OJEnI713F/0+Xhg08++tH3PvnZT340ZP3FX35z9ea1l4Nv+mHYpJwvX795+eZ6KvrJp9/7R/8rm/7kX//y11/Nc/EpTDq6S8gf/f2/8zvf+9EPPv3hF1//1ZubL68PN6EtxL5O1Sor92fO0RovPegydhw2kmtt4eObrADiRCGdqKkT0tVjmz5s0PPoRjLpSoNePDQQSyX8PVZqtH4f92XodA6xWuy7+10rCXnncC6RMW0RZ8FS9aVc88nt8Vot5uL0LVE2HitEW/nZXURDmnZj5J7X11+/uvxynG7GaTqkeb+fTDdfvnz5xcuX26fPPvz+pwdOn33z5WBd6jfb3dmm78/Pt2fbbcp5cM6ObirU7qNPPvn+7/7w+e5M5vGLzz//1V//1eFwu9v2KaWI+Prrr25uJmrWtOty99Of/uE3c9lHXL66uY59YhqnmiP9/N/94uVXb/q0eXL+bPLrsEl7meq0PsjxMQiQCEhjrbQQtJBvdxBfG3Sc1gQTd2/xd2xvgeLTP/92G8nUELRAdCEQ3qmWe/+vBSWnSmPhDdyrxTqRn5VLBIE0OgKWAn5yiY4DEF1ygKsCakBZFpY2WqZ9rXeROL4/aI2njuATLH64uv7q6zdf3N5emsPJb765/Orr17/8m19P5E//+B+++PjDV+Ntd7YZdKMRJiIpURTQlpw83+2eP3++OX/6/IOPzs7Oyu3+y7/5689//dfXV5cX291m1wvw5ZefjcWB/vqw7zYYNvrl558TkISULOfc61CLm+QPnr/YDmcm6Wz35MtXmrSrUUjB6SIYBEARnlo0gI1LsIzoad3FWoPVAMzbGah7svJQAy1o/IiE1ilb/x1oxvH9ZSi10qhjqepSw3xy6SPP/5jDOnkk3nWrwtK/a+mt0IDfeoYTp38tbWMIKEbwqIG4snzWEMKScF19+eWeWqo5IFzqLBtD0eT29vr29urm8vLy1eun3Zla+urlmzfX+83Zk23fXzx77sHXX39TS+12OWvOQ7cd+mHoNHcq6Pu03Qz9MPR9Oty++fxXv3zz9cvX33zz+tU3u02/2Z69fn358uXXULOuP4zT7eh6CMv7m7Ecbq4PNzemena22W0uINLl/LO/87OrN5dffPb5px99/M3rv7meyhg+38XdFrDcnv34lGuCk8c89zFoKuDaT3PlTIscO0K3BSWBhcrXfnuKK2QtD24g4O7lW0GZnEhUS6ELF34YcSwnasGZheeTyIBENIJSgIjG2pUl2CIhYhAXuq5qgVC2hhy6xKkjQpQeBEJHEYU2eG8QpViVJepDJRHCELiIQ1sAX7FkFFvoMUg/hpgavRAwiAmyiFCCmEsdaWadxRzIKWLWETef3dRv9nF1ePGj7/tUxlIOzrR7Yn1fXMfLW9wcnj897ztLqUtJxzKTnnLuus5rFTB8evP1ZS3z1y9fXl5ej3Ppdt3Fi+fXt7fbJ88/3D159er17e1BdEOZxqnuL28YOr++/OGzD/7qV59r6pj5/Z98f397Pdbbl68+v3z19e78mdH31zfnz7fVCxfk60tzHEbUgPgatWEj64RAoCZQ0dYzTIlGBo8lPgSBZ4klzsqFXhUM0TUKcOf6EOJrMRBXPx8khKowQFvgJoIRIaRGgCGMEKe2gjiA1IAGJMRVU6CCCIYjQrjQd7VNLEUQEkENXRLGCrEl769Hf56NpyEgw8VFILTWO2bRJavbjxYclSC89S0Q4dIMdW0AtkYeg21M1du1hRmiPFYwa1BCJUQo4rWW/TfXflmnN4dcZZOHL7965cRMeEgvuVYpU82BniJ0orobgEBStX6zTaamYPjtzdWrb76Zy0iBJkWym3nSrivUQtHurGc/1xik37+6ZGAcx/l2v839px98MJleT/NhukoJfYdsTHQf91JrTPPtTahJgEsReouOtZFZmKRL1N3JgBsjRJQhLZUEyFJBsSRgyQWcktoMfzSV1oZwAQcEFOJYOUmBlTjRViETY8CW13gB+UpoLJnI0MVLd8oKXdq1JM0tXiTSSnQdFSrJlhbTBNHypkIVAUVFtKE7IVoUvaVUUZcOfKCYkCERENdWLl+9Vf5yCRpQpLFqW25/qQiR9dm4cH65KCCKwFuv/JaJUwECmapVskuaEeP01WdfzDc3+/3++ZMLRrx69crdKRIqOSeSpVRRdXdxDxSVmlKnlqhagx4+HfZXV1e3+6ub28M8Fwcsd1Hm6+vDsxcf3Oyvb28Ob95ceeU41+fPXhwOe0AOh0M35JevX42ESq9R9q/3uyHP11cvP//887/6a0kfDEP/4sWL19MbLkb6WJm+Cs8Ca9rIqjAkKiAMxEK/l6QJEIEBFLFWWtO0RmswsTp4gqWz0eprnARvyDbCgoYDSGUIJehrBBDSWgjIEYyCoo1BTaEIHaEAoWlmWyOiUf894IuD1ERYl8ohpQpbObhQJIK66rpYOqAsqSpdqsO5QOKoApNwNoy+ACSGIJLGkgHDUgBHrMEq58KepNAlRKCUUARFVZYHMUoKAS1V3F7tb6+u95eXavrRxx/f3t6SVJWUUsp5s9uJKtnKuzSlVINenZR5ng6HQ3GfS7m+vr66ulZVsc0YnOdJ5slUIXJ7O6nIOM59v+nOhtdvrufZ51JMk6rB0G3Ti6cvrm8PX/z6V198cfhgl+z61Q+ebjj9QT0cis2WrdftoRzaHDO4NIRmyx6uM72Q5Juh17YYhUFkITwrly4kohpBPXLW10DAUTxwLKURLEzmNRi49FqIAINs5Ql0BQExBYS6EP1UIa7i8IAGl+xUAKBGME1tBUcy6K3kh4hSXZTHZSFEqLDE1PrsCcQIRW0VShTxRmVj0x9iLiIQCUGIhEgsNKqmURBAVLAxoKit4nihy0dTXQyiEr7UQgUBE6lLFEQCEkq1UAuRUA0ZX+99rreHw7Pz82fPn//yL3+RumwpqWrOuR8GKDzCVEWQ1EqZylzFncDskbvsxMs316L2+vX1V19+ZdZ1CWW8ffLk6Wa723/z+uzsvDpLqe4qmqapKMxrqOo3r7751Zevn7y5/dkf/v4/+N//7379l7/6/K9++f0Pn3z/6YXNU93fTnZ4Xa4icx2HVS8sre9P/KzmzQg7ozAUZqC17mZCgVaszuniGxsWrR5cmNfeAOVS7b5CIPfGw2kKHpA20iKMlp9r5WsKtaQiLfWpVOgSOYmACEPZyEXCiFRYlwKRpXzEQzxqVTAU1t4CQkRNsoQYWi+T1nBPIRokRQPwxfqIqwpF4QZq64O+wviQCAaELhAsBMzVD2/P6UKCDlbAdUkmtsyeBpSAMkSg0mJFMIo4xv1hmmYBdhdn1Yt7nabRzEqtycPJaZ5DapYiUxHrDvv9PFfrEtUqOZZ6mMrr69up8H/8k3/+q1999cEHz7e9PT/f9v25+yhqaayi3Tzd3F5fd13vzmksr16+fvXm1VdX37hynOTDZxf/1X/2j/I/+k//5T/9Hy+6FJz/7T//k5/mv3P2ww/n68Ncot/2d8hkBbmCNbVAaQudZJHBsHY0UoW28ucIZmhdCN8tj9VWrl9I8tIqLoXactUMkAo6oR6gxeJYS1CFjPBmU9ucCN0sp0VHLb6uQIStrWHrpyNtygVIWJj6HuHBIGvQa50bQ8xlEWGRpM1qQJWiUAFMk4qFNpyydKuHmoKiriSh1piwS1c9OCK0lX4xQ5VszoUCje8j0UoqHOGEa0SALqBIsDbGRwgNDKUvbmFCcJ7LNE0ppS53l1dXktLV9TVsN5fZSillHkcpMvfidA3s97e3pcaAodtUwIqXwzSF2i9/9df/6s8+s479of75v//ih588qxXzXF+8+FD4MqcswPXV7c3NzTyVb75+WeZymGu+6H7wOy+Grvv0448++fB5nud/MV7/1S8/Tx1kZ+K/1wnrOPZPtrpwGpq1jhb01Ua1AYThAQl2hqE5XyKGtoSFesARwQXIVoFAHKLQBfwGBAoGEEqCvhiBxc4xKkIWFn5LoJhTSSUNNELpnTJrkgAplUqoQhcrIQC1WTElyUi9SIBOVLK6O6tI5JSKl1qKswCAQbWDuECSmEEMppAagZAQQIyynhlITTXpQldQkYgg2BZ6cEYzmphdW8BIDTBlU2hVGYIwhEqoRVVU1Qpx0lsXDEZlFcX17T572p1fHG73Htjtdlf7V1fX15vnz0ot/WYj3bZ4TV7Gceyynj3ZDIllPETEdrMT09x13TDk3W4/l/nqtkb8i3/58zzg4unzr1/fipoY/tWf/vL8bPPm8pAtPX365MvPvzw/u/jyiy9MTNV2Z8NOZR8H0+GP/sF/8vHHH1+c737+r37+zVef3bz84sWHzy42T1nmcthn0Q5aplGE2nJ/Koqgrp1SFwkICe8Em9BkliwbUoSGCy27ylToQTCyKVV7ywEFPaLAgagqmlMHViEiKqMiIqAJ6iIFUEoNrxATMTMJV49MDkl7zVmYEJZSwGbKIVA9NrkzxVhLc0EsmCmJSH3UIJ2eGBVRwVjKcVkjQEJFqQxnhIqFhIqGBKCmSTU1h7957BTo0reJSm1FSsalko2gUgIh0BYFN4gB6pIUmVAgMQxuDBNXBiQqeWidwhbYoEBogijIqpYiys3NzTyO4zRBpOt7AuPhUGvd7nLXdV3X9X3fDX1KiZwjqJqaixIRtRROB1CfnO+uv3wZLF69zrWU0g/5/OIZw66vbyr1Ynd2GOuHH3xSq//ohz+5ubmdx/H87OL2sN8O52fDU1Z98fSD65vrX/7iL4Ll6YuLm9vX9dU87m/6w5l5YJ62WZtKbhZYRAj3o4u0BqQHR49IoakVKQU8IKEuFmC0HnDNRHm15muHM1zpitpVCMIABgXactFFUCEFUkQLtJUoW/P6InqJPnwQzcIUC3pJoRGYSDIiJDdFFegpHQBE2tS5BaacUckKdXCMCm/1NUaIiGogwgVUVUUoTCVMYdbWcVn8IgpygpFGdBopaI2E0erxBVVEsPTI7F0SoMIkniozmESywBgZy0AoOQGCWsECKdQi4WSfUks3bjrjPF++enm4vm7dBmqpxV1ExXSuJaVkKaWu6/vBTMWLmZolr/Rwj2mOInWCpYDN0/5smw63iogu6cXZruvPP/n0KfH50A+W0+3tNDzZPbkYwv3s7Mmrb14+e/Zs6Lc1dGPn9cCz3dNxGj/7+suJ5enT7Yffe7K92HUJCfHsbLOv48Vm22IiIqsTBswuUOXSEgIQGYihSlYxQAQRLCFirdCbwVhQLrT63LwgRQjd6ArmgDGShIno2sx5kqjUIjpBZiyBG0YoYIIeMQg3YGYYqCJOSUxOLVg9oCBDO7AHBwCQdFZKo3E4WBUuUsQseBACotIMblK6RBjEIAliIkrVINxbjCgEFKVgo5pNMiXDM5gAYzQWjwOFUkQKTIleF4SYoVmQAWP0AiWzVGOYhMJncqDOYEFM8EIrwt40PEzlIiUf5/n1Zbm+TWkIcizjtmZLySxN0+QRpZTitcW8TUwxgEq6u9eYvATmFjjthpx+8qPvCz8/TNx0OUn69WdfffDBix///k//zk//8MvPv/gf/sk/yTb89A/+8Juvvn7+7Nlu2OWUnz/RN68PHz756NnuQqTbXmwuXrx4/ebXH/7OJ3/093+63fW3nFKWfrPNt3FuJi1nJI3FQieLKteEEkNh6F13kTJSQiIsgAJSpLTQrrBIK6uEVG9ZHkOY0kQSkYImkkWTWhKYCMEDaxUUSCc6U6pogARVkYgeHCS2iryoMXHISHGiQN3DRXoHyA6yVdlAhJE2dRKREA0zh1TVAjMT1WzwYuGqotpFdFCDJGhS1eYXhPgS72wdHCQgO0mDiiI6pF4igSbS2o1WYIYWkaaHO0sGUZFMSyI9aYzMqsIMJLjClUGVWbRCZ7ERNonOIiYSIkPKZ5KmOue5pHmeZwrZ/KPDeKi1aMpQmcp8e3u73WShbSz6lKtHqVFKnX12FChCsNnaRy+e5Nyx6q8///qWk4rcHA6ff/G1SLq6vhWx3//9nyr4+vLy2bPn8zztht00TYT86Ae/P41lv/frq/nZB89/9sd/9J/9l/+wi9snu04lpEjxiGl+uhkyKEsRoRzZ0cWEonQQSguh9Uw76bJm00TVEBaJCtEWEZZojhMEqhAyg6aahUZmZGMkhjGSiC0L1lEYFTJLtH7ntWXFRNXEgG3IxrBRJrbElQdcYE1jTWRlwKlELxigG4FQ0uAhomERIa6p0sxMLCEgUg0SojDdRpyLZVChScxUrdWtNaZHg88qIRySZoMhOmCgJwkjQj1ECqTAZrEq4mBKSYBVA0lHWLiUkiRStBYEYUIR1ZRmpoJ0UDuIzQqPgBq6oReBcwPpiNFrqIpIhFf3FpbYDJu94zAe3ryR6YCzTs63OxOZi89lnr0EZihhWn3e2O58u/nRDz7d5OHV6+ur29C8vb66/fM///kv//Kvnj99+rOf/rRM41/+5S//l//wj1VEnM+ePlOkzPPf/+Hv3MbVP/tn/yLy7//u7/24t9H85vbyK/iYkiaBk+qeFW39BFERjxbYSmqk08DWpDfQI28wZOtSSlQJRg0evJC1grUl4hUizIlC6URNNYt0kAxaeAoqQyMkQgkyqoeIUBBEtNbNImaqARMOGhvIRlrfTBe6i4TIBAzE3qMsKQ52RK/oVTQ0DR5UUHJIquhUskiiKJQG7yOgAuiZ+hNDYqiqQUxUhSamqlQNtLAwAahSWQ3ohFkkierKV3BBoVbCiWieG6CKLJ4ECTR1r7MxstTEUKjCLczYdUiTWoJ2kCI2eaFA1Mzhxl2v2UovVkodD7c2DP1mmGI6TNNmt/F9qdM8gpxFOlOm7aYL1iMrtPUrOFzfKEyQP3x2drbpP3x28fO/+nx+eT10gZB52n/59eHLr79Q0S7li6fPfvDpx1eXVx9+75Mnu2ef/9Xrr15+9dEPnn/wvT+crqc//9Nf/PhHTzMOImJdhnjX5VDZX99sN4OQQrGIpehwWaG0BV5IuhBZOGSY0hRQjVATOhg1Ki1iNg26t6SgCZNqUunVemgGgVCF1KXgrAUNLBqoZqACkkSgYk0D0rNABSpJNKBVIUSkQBeSRTpqYQhdAwNkQ9m5ATVtRCkptPe0TWmoXZ+Q6DWbnuUwoWgoY0M/82rhzckUFob3fZ+yBtwBpztIIoPaet2Tui4m0aVeIGt/kdaahL2lUBeECs3CEIBHN2tAg1ZbAsYQKaBQzQlJ0ZmG2QiOU6WgS5bOh4++9+TV5VeHl4f5+nbPue8+6Lbbej1SMHRZYG/eXAa42TzR0DpL6eaUUj/syO00jYfDrXvth6zFh01WqdZ7usA/+NnHv3vz9ItvXn/x5cvLa59DzYbi2AzbP/vFz//Nz/8dGAef/ujv/dF13HQpd5tusPR0d7EdnuLmOm17SSVQXWKuBydyn3bbrbRQBUPDldU8EqgRwrBwCSeDnUgSqAsCkaIqq1hFcu3cJVC1wEJNXFwUHTVTemqvkqHVHWCEBpTCamKwQXJ1F5YklQnWaYBTmVoeX5CIXDSFEVK9BmtlKUbpVHeWgpwqpJYBeKJ2njI1UmfmZpFUVCUl1U7Uhla3bZHoCTDhBrpNWQNtoSSFMJANqtEyGM19IyWv1MQlMQgBJIlCxESTBKLV9RO1UFwsJIXAW7g8acOXqiYtxAT0kF5hoATFAgDMJVFELKtplt1uePH8yXior17N++s3Oedu+wQKjzKN1Syfn5+Z6P5mX0u5eHKRuiVbpypmKefO1HJKAnop1KrgkKGmqn3ff/jkfPfNm/2rq5urm0lcPWZJ6Ieu7Mcvv/7iX/5rv7k6fPz84/149dGzpz/49EXUS8abv/ef/MAMdzpA4OChzko3hpAp3OhKV4EBFpRohBe6V9YKE4hGaA1UiseaKyOtUtvxGqLMxh7WC/rm5ZgGUSF01kYEjWCpcDeGGZXUAJSdiINObVQuBmpLiDfOX0DJBCRF17JoQAdmRGZV0ySdmalqsqyRxLOYSjITLCSRBEnEILKFCFXoSqOEhIu1tQ1at8aWdhdb2rkubKWVPtcaPCoXNrUCEV5k7dTWuFQiota1ldGiRaBEgI7aAeatQ4lbUMJFYCaWNSWR52dPyief1CK3N4f9VOlTLYfwmeFonVEDhI7jPpxP7WIcJzLMkllKyYDevQa9lFqKm8HMcsoKJ71LeHKx2Wx3H3/yISV/9vk3v/zlXykl6ca1vn71xZtXX0rYV1/86i9/8edPL86yBOLmP//P/8Hf/ePvh6LxFUKEAYfc1FkljExkRrSUupkRXBeKb4QyZQ0JUKPSS3AOKWBllIiIaGQ+IVqKtXF6FKat/76oL0vzeLjXEKnBeTaGCJJqDjGHUDN1Dq+MGmupZ6MreVJva1JSEYmehdAwY0cmdRV6qUmyQhQmkiBGVc+iYVjeCWECE5ApPQSh2oKAEFFdU6MCIFEECIiEKtl6hSx14IJpqgtZQSCqAhGp5lW0EhBvwXFRFWpmc1DUwpsC65wpqL60aGOVqNEqNgSVqnI2bPH8gyg01anwzc3h8maq5cBQBpxeQ3Luu00HimYbywRDdk9dEk0mQkGZvNZavQgkd7nrYxj65/3Zze2h+phVum4Ytrv9zaVyjuJV3MTD6zjPZ+fn83zw/eh+YxK/+4MX/9V/819aX2vrkbBwfs0l9iyKyCIZQiCLJMCtBfKtEeW1VYBNNSxFshk+BceQAjrocA+3gAittbQTSGgEPLEEwlxFPVA9SmV1VveojupZmEwbh1drW3tOrEh1ISKUwWiFMCDCGzkMrYlOj0gaCdwwshQVKT6nClJCtCHuqlAhVU3hBmRGFleGkXAqKQygJT9anQ1lCWYuvZ9Ywh0rrX9ZymquMxq/xFRJVRWGxixY1qFvaQxvbGxahMCVVGH70wKsEQ5WhkOcLfDmk0+mKiJnu80Hz54Om41Y99nXr37xN59//frydp72h2l3/qzP282wUbXDYSy1vcNchFBFxZRZtIqGhEdErUvKJJlK+JDgptSQGJ/tup/8zoe1uEcMltXUvR7KJCkldJ11P/nhD//4j/7wd3//R19//RcRiEbhJFsmOFgJUREzgarwhEO+JC1bNW+4h9ML6qg4UA+QInSNkCCZuJjFBAOiRoSHV5l0FkWyFER1zsHZvXognBJQUZWmwqM6gh5eIiZnASK5mIiHxVIb04LdimidIqhMEhuiQyQQWVJZCLChrNqcYAlDShEZnhBJmEgG6lQW2g9JVICtL6oLghIQh5CK4q3l0EKSkoURJyqiatZWvYFBWG7hASVEGYAqPTk1qBEK14XjGsIQD1SiOiujskI1m8KrmyeRpCnnnLt8ZjrsLlzseqxffH31zesvSX74wYs87A6HiUTuUysMgRqX/gYIAiL9ZpM8uXe1lpZaLmVGQFW7pB6c6zhNh01vf/Dj74N6c3u7GQZRrV4mzmK66c6zdD/76R/+4Mff+/UXvxbxxs4IWfiG0tazEJhoVk2ig2gmJdxIC1okCxHKFGNxusWMGBEH8FbgggBDHBrhazGrQGnugfCpOIQhnruOoAdq0IloOjDBTKqqQbwSFVF9qrUyZkRVA5IIc0i4JMjSDwEhgAVNaaBJdIgkXODRFIDCiNTioOEqVDCRSSIhLKgMr8HabqMJ57LyXev96mChOkAG67qCzMqeDImUEgTNPC9EMwRkaW4dpFe04ANEKCZIXBgLQqo7SKmO4iyMylADQUegShbkFBRJKc9BtfTigw9m6f/9L35d5vLsxUfbix2p9aZGMOdklm5vDypqlqQ5sxoNU+eUiHD3uUxlnr1WL5OZqGWT1CVklWBISqSEa9eJu88+bTZGwbCxZxfPLp6dWU43h5uur6oOAcTMhIJwKiUBWTS7dqYJmskckgLJqTUkpOEiGkLEhVW8ABVw1VBEK19shHOowMLRKFQeQXjAO22keYnWQH+pO8CkaLqozVAhDqU6UE1CFQpVpbMPLVyW71KjCi0iEanFeLXRB2IeaxqpQk2NTC+N/ONgtIJ1o4hHeA0PXdaSaqUhBoFHlIhKFGJmVAoDRrMFOMtKlzoW5tDgZGsjHV3u2irhEVLIElHhKXeaUrJOzRon0WNpxzWDBSykExr0lt8Ds1gXnJ2b3RmqpeH8k48+Pfug/OP/zz+1fvP7f/izGtiPc7/Z1FoR4V5zzjn3OfVdl0UkokaomaqqmZKsXkopZbopk65cF5qaprTZbEV1mur5+QuzrgamctAuhu1wcf7BD37wk5/8+A92Z5urq6+m6WV1EtF1llOKGrV4AjoiA50iQzIkUzqKEdr6AReGOzrNnTWVA7i09FnWEDhVFBoqogrjLI3MXgmXpSewu2uylEzFJODFSTgjPOZY+s0JdSJvPCQpTMW0rQwHEhUMD7hmdopexMAU7FUyRIAWqq21pgNNQxI1EYygeLTX3gwmKqKtmyq0xkK1XLLiilJ8ql7FCrVCKhEhXdLjqp6yNgNoKJVrZWnj8YpmoYqaUo1KmCxx6S4ka9NRcCcLPSAuEdLaW6DBu2hUKTQGmviM6M63Tz9O2+fT1TfD7tlH3+f3fucn7vHm+vrq8nJ/czuPBw+m1IulAIuHqURQVLphWJQjaMj9wNj0Pg3jOO4P1wgOXdd1fcop5e7pk6Hf7vrN+bDZ9UOnufRD9+T8g+cvvv/i+UfFZ49xd2aXlzHPRQLTfvQSg9lZ6pJIVunUOpWemkH1kGg9j1Iz9YFavYZSgETdmKhpgDVYldCVDQ1trFWulQuUZa0SgAaYCBTJNKi1IgIlogYq4eBM3NpiFjRoHhrA7FI8SDexqF4BelfD2sJ3CsKDtZK1ME2eF7+O4sKKOYEFEckkKcwSCLIGSm2VXkt1WBCTc650RRVxiMNctC1WLGvlm67lRYlgUETcmVoRGVKIEgZNSlNJgDkFSEILtCWVwqNUOhuRSElEhFQuSWkAWRmQBM3snlx8vDn/+LbgesTzD3+3O/uo35yXUjYlokQWK30fgXGGmhJ0j6VlmsdcrrfbYbPZqkqtdZpHr96lYdgkAFFrtszqYyn9RobhrMvDdrt9+vzF8xfPc++MmnTbp5ws7ba77a6/vPzs9vrlHFCROhU4NsOmNyYgQ5O2UJYy3D3oC++igcJAQZ0l3BS9akrdhuISBVIBX9Jp60rLlFYvF0vtXHO8kZxda3pPRGCumNxH94NzAormmTwIAFiEkhaRITJVzB6CgKogk6wSs8MdhIGhLa6JeWIqMigbwcSjUaPhwZAAAjVJbkVrHg0CHXssREihVpWq5rDQHJIgOtF15bA2N80Y8FqdWYXefNVYwKBoe2MC6i0mHlDAJRDhtdQyzdU9woUuqC2mkiSCZfH0JFRCxU2t222ff3+U3Wdfff7yavrg0x8+KaXUOleQYpb6vu+yRYgkbwVMxV2P9P9o7RKLJfXwaKsmQIhUqkRFMtBRPSx7KWWcZ53mYa7FfXpzbeDZbpu1iypjlECY5BYlE4OKpiRDTqgzBc5ANB6ZSNBLNVKjhfNEIYzQMmev8BBR6armLlSLahWZhRVSIcGiNIQEIBEaS/9oU/aQgZ6d6pQK9yJzCXeppTAOanOW2VIxI2CU7I3HiFICxZF0qQGK0IDNxWYXh4KuqEk96X6sibYhwiNAVbiAYDAo3uilMXPpkI6Qdpsre1mKRwk4NdS81RCq+VL4Rl0LdoLi06yCKugMrmqmyiBdRKEpGqdSNFBkqbGuDK9lKtNcWWpLc0BpEqIUoyg0IhJAsRQpuaZ8/qKms1fX5evL6WaW/uyZlVpvr9SpWojRg6jhRD8Mpfg8z+6uKimZqprh+vrm1cuXFOYuD/3Q5V40TYfbN1e3FnWTnw1Dt02WuiGlrtU6OmU8FClFEoyqtOlQ5joRJWcd8uCpE5ZOzAQ+F/dSQWEbLwooTpZqaOnNheDbh9tUMM82FwGT5ZR75tQnrTmPphMQiAjJvpVGhGrxUgJkpnTODp7CZa4sFdW7WudaWEuYRqee4aKeGwM5BNAIdUQrwBahqqo4W4wAUelzOFlNGncfTEmtW3oBR2n1kEHTlbvDStC9OqhJbFn2cCm3xVhjrB5JoE5amGJZb5baipfX0pypzkpkRbgk1WRqkGmeoQoJJIgKtIqqWYaEIKKWMk1lPhSpVCM0RIMWrT+9KbikCcQSUhdIw/bJ7eiXlzfUIcSrVw+wlbSKqppqsxJiXU/OpRSvTm0bAKm17g+HWmvfD3TBxqTLkKySNGnuBzU9Oz/PXTfNYZq6ftN1GzJJaB3L1M3j7YiEALshp4TN9sLnqzpVgcQ8XR9uc5fbakpy1ykTEqGgEdYaS0EsondyLBhHVFc17eY0DNH15kCyUMyMWpl0sLAALKqHBx0RQ0oJzOFanGPxwxylGii1IkJafipUVE0VQVNYZQ5JLaUrkKRiBhMGSPeQtuoHIwLWllzouiGxzqqSFSZmKuoCUUplMKgOCI0ehB/CVbUtadkYlnPowVGcLjOSWCep04hiLB0kk5lBhiNqUhc5iCSmTM2zCmRsJDQxY1ZRkxCEqQsDrB5T1LnGWFScWaWHZEVLO5IRWZCTgVYrTfT8/GnX9ZdX4/5wKyImrHU2sFOKCZNF15ls6RXQqQbDwTCzlFLf9SmZu2+GM9PsNdQspw6UWiZK7C7OVeCagjjMEarWDbnfRcX++raO1bwOXY6w6tXMUz90u0230RfDJuXu+uu/jvpKeIhSzC1UXTELCmNmeFRGDIKNyYbowRycZ+cEd3VXuDs8lalPiiQeQcmtvk9J9VFD1UtmFYaYMGURrRG3JWLymIS1Q4Ac9xElNDyr931szFPQ0RaFUFT38KAKLZtqFtWQFJJVUnY4ZpkjZoFkZlNVmZNMe01mOWUxhUSjpoZGoLZOvKJCreTIaipJUog4WJyFViTG6nNQ6V0SUQ0PQU2iG5FMOjiC0dtkOjOrq02WqioxqaJRHF0TJCGMoXSNGVKAArjAoRKSVTVZZ9I11z6hiqK1/bqd3BQXwwWcZR59PkQ462wsyzp7ApfmCltbZqJOowi2mwEtvinaynyTdpJTGFQ1mYnVwORerTOBFiKnriDv+rOzs7Pa/FzJrKyuutlZ10NFDXnT2bBF3292T5wyXl7OV6+7CsCiKjQjSxXcwG9YpgDdz1SeqBokR0StB+eeGUrJqmmmhhuYRNUp2hIOBmYFfIyg1ZoikohZYrIxMJM3EXMFw0yTmJaYRtWxZtfBuDEfOpdKilXRkIRwVvHIJjmpiEJ72lZ0k9FrEPu5HGr1RlneUMGSNuFaaW3tYnKpqllq6oONWhCsIp6zaDJLgDhZyBo+EQWsKiZaIOaR1ZKkLGIUU2vNG5y1iM4MEBpiHoiYtVKlsYtaLi4hDJHNkyCLmJiKapau02SaTE0sCA/CsiZYSiUselPLAszTOE7jPE1k1DrXWlS0lFLKXEsppZTa8iyy2W6dUWtlC01gaRGBRgBvKM10aUsTcI+ULOdhu921+Nrt7WGapvPzJ6pS5sKlfSFTttwnNSFb/aalrrfUe6BEJEhVrWqFUlpU3eEuikyKB2aIOqurCNBBTC1plpyUJiKGMBEkhCo00YCIhZrYrAKMDI8xOANuZBYC4qBqWF+Le7FgQjY1hUbWUPVskQJBDU01xAVZbdB0rnmb0lbNqrcyXtaqqIQGmc3SmTvo2vCSQgQN0kZEiIcX93CJWbqinUo2MQAuzZFj0XCaCGgiQic7lbTQcGVhiQujRCicqBGgawSchYUU0cb6PnbfiB7cKpOqGbMaUmjHrEip1U2jEprMOqOkyUWZkTYqMrdkqDvb+lxBKqXBHhVpq2yIQmUYNnMtAGoNkSborfxNUrK2DvNara9rEi/1fb/dbgG9vr4uc724uCB5eXmZUso5V1YPJ2hmSZWIlDR3SWO73Z2P/U7rXpVzQRXWxlKvtIocogKjEVIlRqaZjAgikkrWtGnNB6Q13dBgq7jUlhUpKN5oVfRKavUQLSJVBQbrVBXmCFV0PapjUg1DkpQbaaN2Fr0yKxsBda4sEZnsGFuV8y7vUi/VSzCmqc5TVFAsQmCWNjc3LYCtOWmXLGeaFIYrC0NSW2iMITgw3QmQurO6KZFgVCAla5CrDT9FqkrQCqQIi2sVLOVeFmKgMhpBUgUaMBVhAlty1xSdiIpm02RhFllLZ73Ag+JBSFUVFwBqfadpECidEZVwLJrELKkKyYhs7hmtCAsyjaMk22w2gJRSp3Guteac1xZgaz9tikBNs6l03dB1fUrJLO33dj1e1+q1xvn5+Xa7VdVa62F/GDZDvx06A1XcfZpCPHIeUu4KtHqdREMJ0QQMIobkhLSQNAxkhVMwo9aITqQTpWgJTxEbsxTSlplrXcHcGMaK1rHFNdpy3YIu0Swls96sSgotIjVrmpkEC8HMaOpJo9e60UgRJkFBIaqr1EiaOqSUmAyqKcxMTSS3LrNBC6TEL7+GKZPJZrBt322HgDKcFgpXUC00gdRSobKkuQJ0NCa+KCQpskoyJnFlRMCVBQqRAswSLhqCUDALIDBapREi8GRhEklD4QzWyK1BEUVFLJAZnURuVcmttYBE9WAhklrAUk7dpsAWa1XrWkEWK6kt1qZmS2sHCKJl5NlCRGZmS0M0IgK11lor4a20Pueu77uUcgRJ77uh7/vr6xsze/bsWd93Eay1Xt9cpWyb3XbY0VSCHA+TRs39sD17enN7Nc3XLgXKTtBBNzRSXMigtVIXQQSrGtWAjqYCOMGQOQrFFKCzRkAAVRXQtAVc6e7RWKvohi4lzSllzYnWlZhFqUKE1JipLQ9g4ibeofRRja5eWGhzYtEICVFWBLRQzHI4aogTvqymCK+R5i++gYl1GbuNXuyEoZEi5jBptgzWVmF2wqPFxVoQEbMpsmkSdCKdRRIklVIiKmrWxoMplFaJESKNdxRQWFgnaYYoPFk18aw0QQQwI1rfRChDSDWu1YZVYQhxotZCAaSSOVuXbKjM83wYx8M4HppTTjppiJbYmptsMTyIeXaxZJZUlw57ItJ1XYNEpdR5jlpLRB02Oed+M2xy7iB053i43e/3JF68eAHw+vpys+k3u7NSfJ4OOeuT6QlYTWWz240jjNoPH3WYrI7XV7i+/iLRO40eKatKRkDmWsxAoCpalZdYRkotYy9RSYvQ/bLUVDhJCbUwYttKLAPhWPoHpsZ7yH3uhpQ7Sjb2TKyijESfgxRJ3grHPLMaJ43qdUJh51lqLrPP1MiYoULNPebqxVk8EKQBau6Rpje3FOahVwi6btb9fMCepWbxrOiM2ZCt1a5HTNWhCMBNa6su6ER7leS0cHqodSG5lFpqKYKJUQHtMoJ0V5FGqJBS+0gqUlXV1FVDBSCs1T62XjCmBOs8lyqwJAj3WnyaZyY9zAUZnodDHS+em0ca59LK32p1ETCilimpLgMuIKPU2ipTPcIsum6z3+9VDMA0TcOw2e8P81z7vgcgQjPxCvcQ8WHoxnF6+fLlfr//9NNPVdXMXr58+fr16x//3u89eXKR07DdbcAId6+FXkEVTRF1u3uCDz89zFebUZLOG+G5oVPjOLtXJKkcp0JW5tYNQ2ghBhNp5NRW5SRu2GOa3AudHpnxdJp2LFmsy0OtZarzVH1DUyTVbGIa9FJQOUTPUTEzOxqjJkEVEFSy+DyWw1gOJU/WxyZLR7DWeS6z5IoUU3COCBFVqfN8ddgPXZfG4iSLuJSQOaBlljiw1k7YWYQjTGouuVBKW/Ku9UCw1jojHDRp7YdqYXVkoeqMOAgn4QwE0UHdne6SsyW6kO5KKq1BoPDmCEHDGmiJkOa5UI1IimQ0gXmwVMKk1hDVyBbIqT+/PcArVvAbrVjNa6klSDKaMUoqrQ+czn63YGDf96UUtP6BIqWUYRjcves6s6Vddc5dSn3EdDhMpZQmYZvNZp7nw3gYp8MH+fnzZxdPzrfbzcCo+9tr7bfuEALugmTdTpF2XdKYh4hO2QeiTmWewtvS2hBFyslyStp3TCpG02CaxOCpCpwMjVI506uJg+FMtC71ScW0qzTWaZroGtSAoZSQsXJ2iYRJdAoLpE47LlXnYFQvS6VcKTo7mCQZBNVLlMJavfhUSqkFLdcChhe6pRvLAZpapU5OlJiFU6uQb+WsDihql9hXttr21qoPbR1dLwhtbBMvcLrPk3AyOQgmk9raJvksNbLKoJIoJarTvUpIy5gKjG2NM1ZEoAYmp1DmYEfLHGZPJTQFIrRaD6qYwrZq2/OLjzbnL17t3zjRWLWtN3Gj1B3GEWg5JqZsORmp41yzSM651sg5b7fb6+vr8/Pz/f6w2WwOh3GaptvbWwApbbvcp5TOzs4jWKurqlm+vd2rSsrp/OLsxYcvtmdnXd9tNsPQdzknIGopXr0SIqboIE7p1breDDVYapln9YhxnvaHw2Hvom4SXVIMpv025W2XRFOoVYiGCWIfrnSJbJ0oXFWUNdOzM1mnokwuoWrp8lAlpK82iGR3mQqKaJ29ai0OCBQ2B+hipTV1gAMhDfcSUeHFsQ9WjMm6THEvhZ6VvSZLhBFEun361MMlpXm7mYYNTAq8anJtvUOFIQKpFa7hElCERCPsG+lkDa8hlUwBDdSYZ4kx6ZhkojmgjmzWUXeat7k3SxNxsBh9Bpo3Kh66yFqwBA6BGpwY5p7AbKGsGXMXZgJxpt6k71O3s+Fid/FhHp6M9doX97tx0VrdJ1SFrU9fQ9YkIS2k3nVdrQczG4Zhv9/3fT/PhcRms726uiJZi5c5uqwMmHUR4zhOgHRdN46jmeYxbTabnPPZ2Vk3dCoyzZMI+pTNulqmGqpZTIWaNQ+a+lLgh+qHw+ieomKey7g/HA5URUqGISW1qpAZ2oEB5gbtSZIuEimlTkREq3jn6uDsdFaKzc5D6B7d5TwCkaN0Ir1HmitDWScPE2oSzazV2UlRD9UQqkVK7ENTyqKqBTox9hGlFh3H3kxIVem6vMtpIylKmueabj9+4e4QrduhbPoQ1qgwDSF0qQ4QEUcqldEaqGtrptA4UJorx8oe6CgdlTWKzCWsopV2mVAy8s70Ivfnw6BJb0oUzHv3tn5aa8/QdGPLUM+N1soQutVItyGVFuMAGzR1phuzfuhTt+13z7rtk8Ms+zHIReaPQRwR6fueJLxUd/fitRKqMrQFI2XtMisibdWVUsput7u8vNztzlo/LMBaXYnASLj7MPRk5NS712maRGR7cT6XubJHYVLReSoI6baFZppCRCyL9WpDnWQ8xOFmQp2TuHile+SlXW20PABjrKO7qyVqrrRDcKLMYFWISLZQ9QS38GkuV8UBJ22mHICDyBWTh5pLJ9K79DQXjB1AMZcO3AgmeO/eiQ9ED0uaUhqGRkRPcBqnWhDj0u/LTWSTpBvytrcNDFluhenm2dNaK8C577o+B+leNVnrF8UlcwpCSm3EiWj5UhFoiwYUpso+OMAGkVwLtFK1YSWIqlgS6cW2mraSAyGllGk+tIVrA9ZqaaEKqkplW186QI/wJMiuOlNrbIDzLoWoUpV5sH44f8Y0vHy5vz5UirVQIZfScUCYkkV4UOG1xXaCIRptQR8zK6UeDgcAt7e3TT5y7s7OzoZ+KCVI6bpOVSLY98N2u725uRqGYRz3TmeJvh/6oZvn+fb2dtebIYQBsSphc6lCT4xWQpyS2hDoq+eparikZCnDsqWkEeEkNVWokO7ziFHZQbLTJpfZMbuHiiaTBEMIKryUWmsEA84o1L2kQ5JD7mpSUc1AMRbJVXmVldDsOriMXrbhG/etRKJsUjekLmvSLJGidoGQtJ8NM6si2RjViCTe9IqwNnJomvpcFGR4smLq4QwkWfpMY1miywPZaS344FxbVSHEw13cGYHmpkMafxUGdKFCzTBdF2GOQDDqVKf9VAMFYq2tG0K5tBgPeml9kViDvqF2SBFOR1VxTbS+op+Zwoa0OXPY5c2beR514eYt6yI097zUyggGAVVNMFFKDVb3YOw2u3GcxnFU1cP+YMlaTv7i4jylFC6lxDAMqqKqu93u4uLJF198Vms1s4uzMxHZbbddzsnUa1xe3dZp//TiyYu86XcDnRQHXZAIo2bRLltv2kEyLZCpOVmSnM1r1VrFRUH1CIQrNWqoVkShVMY8T2DtctYkKhLu1YuyVoGbTsRB7KB5tDQnc5FGj1CBUoth6oJi7sIStWotqEFSOrEz7VLqN9Ilqncxd14diUmKUCVSPxUXn0W4S5gsWcyYp3muabp8TYGqelQWM1MBUBqackMowhCjyCSDB+ht6bxIoJkkkOQSgFE922z29ATp1XaeDElgIUyi1fQy4vZwG3U67EdW0VmzpcZElKhwJ9w6S1m7Pol1VVJE7Mr8vFbb4BZ1mkr1lLYf2mbXP3nenX+0n3ysr/f7r9yvYCLaWxZwImgJOW9bN1JG1Hkep+lw2BevmnKfOhLjPFf3/eENSRPtotttt9N86HJOnTlluNjmLtVapnn/6tWBdf7eJx+lpBCViFrLdNh3OWOO23HPeWOWb/fxJLpBOtboct5oSiHu6uxVu3JzrfO+V0eSvDPJ0WU9H/p5f1NuZ45TqmJUl1w1exZPWlTmcI8icttJnKVsIl4AqqZcwD14DR7Q3XQXU79l7qfDaKAKu5AOlqAiOIu5eK1zmb0ESFX0m2z9geU6tTr8KkJINPZnqOr2wgsOkW7nyURSZ6VPswbmsd5M49SlTYyiIkitYFaYliU9lubnQVYyZq0zAq1sVYJeWnsmIOi1hhc6gUnDVB2aTRWaQ0W0EodSIK5KZcQ8xVzHEpCsYsmQW4ETg4wM1aAJCTFIiHTwHnO2Dp2F1yBLMGnf755tzl8E5LC/PuwvRWaV3mkqKZSgtxXpyWhNzaAUqWa9U0ihipAeS6fbcBfDsuYSgwwTobVlGLj0IBakhGHozUzI/X6PWiRbnWv4JCmRmtKQum3QSDGxBDFZu0lpZ7nfbDZ99ClV6Wq/oSaqesJepIjEDM5jqTWATvrsYp4TNVGnqGPXxVnm00E6aJ0YrjRxzYIYPVPyrDZWDQJMBu+CvWiPlCQnCUY16gx1VQhD1WGTxp5qKBYe9I2EESVkHxypk0hVm5HYwdDnIXfbrldPpGTQu/TcZraJVYZmioSaiwaSh3hL9YZPjplz121SSiZSIcUPU2k+n3qkIoNYmnXInUBl1qRqISZqLnJVRlaougXhhawzwnuBiZoqaQ5I0hDTlFSUCsIC1akuBWop59x34iXSVP0sd2fnTzab3e1hPIzTOM50tsVdzYyMcCoIsNSKNbmlql2X1fQwzypiqeUwLFsqpczTFIwWEGqRgGS6bqKWcrKkEmRKKWp190b8nqfRMZ0/eSrCnNNms6leIyLZusoIoGqq1L5P50/Dpu0sfRqHbs4oYAVQso2bXY3NZSlXZY4qnYplA7OLVYbTutRvNna26wdoTXWew0NqyhvqVvtN7caKCC9glugQg2BQ6Y1JGUYPgZkoawgkFCCjxjxRzRXhEyIjxFCT7Ck3xEQGoMKN6Vb1PA9nadiZpMQxg8zpRRdVGCJVtdhCloaiUINSVWuoi1YXshqiazwHmHsqtdVvKKGwLix56mzQSJhpgDmSqoZpQYokkiQp1ERbwaMZklIVBKsIaCEp5aRioiAiqjpAmSxJyn2/M8Q8okKH7flmc1arT2ONQriUuVimiJrZ0vU8auut11Z+IKOJlyYTyxTSY57nUso4HrxUVdXVF4sIRqhZrEWskjTnLidrqz3OtbL5j8A8z7HyQHLOXddFRPWac3h4ROMC08wkdWPqkDvzbBj7One+Fz+I5mID8nC9yfNcr8pcWQaqOlBBhjNYYlANMRIBenitcwlzdkDKknfSh/V9K0zwksDBmCFJQjRCoWQSETVp5GkwwkdYEO6YgjmgASY4pFBnYBYRw0AIpSdlrmE+W4rSlRgKNZ134tAqUgSTyqSCxllqNWsNMIdlCfHorXYWmmBiqr2akkgpO6lzVTMMSbZGYXEg4DA1QzJ0SU2QQ0USmAbPZCmzJM1iCSoaAlqYWW7NNwG6R1BdLNTEcsq99JCINGy7Ycew25vp5mpfCwXGEFDV2ipjycG2AMjRUedyhEKEiQv9uHW3DBYtApiZV1dVr15KyWohLlLdvZEnkua+76dpmksxVRWJ8CBy1zVyo6i4h5p4Lb4wIOaUI3VJVR3yaq5aopurxdzxwOlKyi1Ea38xdTYzee64SZaZTGZIKVEqAdfAWLGf/DI8RS37cZ7DkSSLW5IkG8uqw5llEnUMBZM61FtvkAgGHQIVSSqFEsESkLAIqVCDmlSVcHo4IApVUetgWUwQOvt82L8Zq1vOlWVSp6TcDSaqCxklJRUX0YAqM6DGTpQUTdQS2eZMUWbJedvluU9BtS5X5zjVAC2llJMoOYeDgNGM1pqWESmsZV4ZCszXc0vPm4io0joVImcKgxLhxWoJcTGqBJHUPCkMm7MnRLod5zLjsJ/3t5MX9t1gogDMjA1RRRWHqoKs3ooTl8DPNE2aLKl1XZdS2vRDmedxHE21zAVARZ1LkZRrePPtrfX0Vs0539zcTONoKZnQvaqm3W5nJikZGeO03+627mWeJ1FTS8Gcu6xqhf6mFC0xVFgFCrp9aAlLQBRK2XTx/Lzvdr2ZJcqb2/HNYZxqAJEth/i+1JiLj+M8zQGzlPuuccuypb7Xjq6IYJdFgqhVY0YU8RKoXgQqYgRI9wXFakCqmkpWQs3J4l6TaYJ0Zr1aFssmJabDze04T9e26TWDZtmS9+ceUlrNQ+NQECrRofl/bSkraEuGawDV0JtS86YSLklTV5wmLA4xTWps0WpgWeYBKtpiMybCJOg1JcYUNAkjDSBkbsgupbLoDBSxmR5qIXTRvvXkzNYPZx5yOMymXa2+3x/meT6/uGildy1EFSKNQrYms5ZOwxEBlSDrPE8e8zwfDofpMAL48IMPlkj20oCzurs7VN3dI5bzqKq711o3m40JSyldp5vtxlRVpZEhBVt3L6WoRkkzBO7eytlnD4GQOXNAlOxjpl7kTrtu1w+7s+7ZpqupN+umEma1OEu4iHZdUvUacls5FhmLQXPuhifd1vKA1HuL7JJ0H7IGxIkQFnACC8KjGBIUIkvBcYuOhlgszD4zSNRJfRLRrOhEe7NOpOtzeEyCQ4ShblKfNXWblObNhzeH/TTPmjvtOoFLLWdD12VLCWBlTCDVIbPVWmoUE+26fjjLDj3UcDIbchpqRFBmR7h2MBGA9MJapqQ5DzlDtM4IT5bOkvbd0ILATlRRS1pUYamAFR6mkXvu+qjzeLtXSaE5INvtuaVu6DdwvH716uZ2fzgcqkeptcu5TX/DPe5NAnye5/EwljKZyjAMKWXerVaxfJnn+YsvvjjfnfVdFxEqknMupYhlMxvH8dnTi8s3ly+eP3GPiHj69GmtddPns7OzQPR9322GtlrlxcW5qt3c3JC63W1DqCYijKhD133yyYe3b3iY5qsylzjbdnnDMgyyHaDisX8z+OXu6Zl252O36dOmS2Hf7PdzzWIChSXL25zP595nmKfcWe5SGr3ux2vL2HYDgL3XuRxKHGSTOXQ1YpppDds5yRBoL+LgNE9qXbNgLuqCHunM0pBNxWMavRb2udQIs/TkTIeYaZH7lPqMmi6RR+knEYVZKBlBQa2GmhCdhLAiipKWpEA8QHXjrHWsMNQQcYUlMTW0njXuoq28i9EWRjDRXm3ImlRSmXJ4mqMLR7AGR7JKcnIWTlFqUmYgi1gSFc1qzuoyzkWKIVvXDUJM81xKda/0VjS2LEkmcuQTsukSADmnZcEtoO0BpNmjiBDCzBhxe3t72O9bb/Lb/d5yp5TXr1+3I68uLz/77PNnz57lnMf9Ptxl6Nz99rBP3aaGt0LucZrOzs6huttuBWxuXdd1ALxOiTUDB81jpFI5wTyhS1Kma9xcSrzZDbHDrk5nk+wom0HlfFBhhpgASUVzUqFpmCTpuklmhx6IW1aL4q7hcxZ3YZipGTWFQULpk7WmKVyWpXWhGoO1epAhjQkgYoUpiUKrS6m1OjX7TExmpbcZNidT5dZSuiYmaBWTgFXXtuJSdXhNAXSStVWo++wRwdIaknuMs7smh4V10K4xjEQl01oDV0iIqqiotTWwI1vqWoZ9nGqUrh6krS6GTkX+f1T9V5MsS5Jmi6mqMafBMnPTQ4p3d3VPkzsQABcQXDyA/HKIzABze3pYV3WRU3XYZsmCODWiqniIXVeAeErJTMmHDA93M7XvWwvJq8KYkoJFa+Gq0hL2AMZaFeHCBsgba5FSjPO4xnXJMRZNqoJ4TbF/vnr+snsSZiZEGwKAVy4sUq6wD0JD19UXOWOZueQ8pEtM6bqQYi1AJErDMFRVdf1z8ziWUlJKBFByXuZRRIyzvhqVtKoaJColx7w651VLCI3xVkHWdQnBVY4qKWg0G0pIUQmMWQ0+p5WWqHHyPEldPJY0zgNVtn0R7GbbNoZkXUUKE5FVUoMeFYyjKigLGyxiIgKAJmXVXBGQJUKnNoAJ3jhLjGAcKClavXpwUEXWTDGXNcfMCFAssGExgFaNIhTRJWdJAt6zsQWNOFIyBRW0OLQ2ShISIWVmo2gMWKRcQEBRwRlnEVQ05qvsE4uiKObIOS6KRiioVTKA/jMxyTsyQILMVysqGTTIXLIgF8ycdJ1hnHNZvaxIqK5WZ9AG65wD40TAWSHiz7qBWBAqIMuIpM4YZyindVlkHuOyxJRz4eso62qDVAD4fPn85WUQyRgiZFC+8uEQrrvu69adAFVVnJPCMcbrSsgaCwC5ZOdcjPF8uXjv7WYzTdPDw4MU9s62TaXXdkqMvq6spRAqhc9RkphSXTfWupLzsszObSrvZDjBfNZ5wLySCoFNReflQmWxDLVpjKgstMx5MUtrcr1xdd0yc14mzWxULCiisCphQVbjHTuXCankQpQJGcFYEyCQUWM8YkBToUVnqivaxyN7FYcIXNa4zDENC08pZ84qK6hV64thBl1AZ9EigFesnLkyHa6PKsnMFnW1hGQh6ZUG7slYZk6poGKlntSkIrEI+YrIfKYtFJGikZX5cwGW+JrpBbJICFmYpei1GI9GCBhk5WTWWeYR1tFxSRjJEBhDUCGBGiJybduKMYySsuSl5HlWAmMDAAkIGSDVNK/zZV3nFFNOoKUUdAaMqooUxevW+v/nBYgkolfyD7OIfHbCfkbVfF44XyeEynx91BFRKsyKVV0Pl8s0jrvdtqurdV1zKcBs6vA5uGiIiOZ5Zua6bqzzdVP74JnLss6J2ftwvdVBKun0vJ4/pctsUX0I1rJIUc0FSV1ngh0szcJLubAWKGTAG9sgRS2jYakseo3lWjNWq5hDc1t8HUWM1QzEpBnBqFhjLCIXvHY/vDPWOEPXAaOpUAIyGhPE1GhrDIPTOeVYMhoA7xKVVHgGjtYhWbIOEEUVSgYVi4KImov1uBrjhFCZ85V673wpkkAUaNFKwcwlJ5YKnbPe+KAKQMJalADJgnVKTq0XYxWpEELJSRJzQkA2jgBs440D0ZI5AicHKlbFGSEAUoXCnDiREjhXgyGBq0RqyVnJAJCknOeExhE3RSinOM9zzKwFgZUJ6Lpmvy6K9f//xaoSI4Cq8HUM+Nksef3pNYBaynC5LNMMInXTENL5chHAULeger1QUkwgXEpx1vqqCqEqpYhIt9kA6jhe1tUDQE2Qk1nX9Zqw9hUoAEtWYIdYIZQcK1g3fbu72SDhmtPc2dOwLIkHCoZqVgATnB0XCF68B89QSpbW2o3HinLm5HhlURYh2SsjsWqRojkRppQhq/FW0WhUyckaLcFFmy2WmkTMlTkkJBk4V458Y1tsp5imFFc0yUASHrmsKOJDVbXWOC6lrHNJiaRYUmusqrVKSM4gI1K5Olmv7b8CxGiswZVoIBRVzhyQLRUgG4GiAhjvq1rJAdrPBRhjBEWgZE1REyFeUfuNr8mgZmS1GRwbqg3Y5gpbtKyGizAXoNK4awIE0Rl1HkNlUS1SyjKvKbTKhTB4Acyc0rWHex0UFvm8QFQA5SsxEhAMwhWfctV/Alm6Mu6u1fTPmU4V5mWex8sAANY5a+w8TUDkvSsJquDatkrrMo3pOsOdpomITPDMcrlc6rYqOVlEZ6nyFoTXaRDFqgoAknO+TFPTb33ddps7XRfju8PN9u7FDTmaYz6NczJjGuKqJlLFDAbZERl0XqUqE6eLX8+7trkNDQEVygFzhnkFXsulkC2lcFkyQ0HiVKKCYSiaJQkzOK8WjKRokQNqbyhZWDRbLgja2MZ7T4oefTHVUiSDSSqsoIDGBVfXSMiJOWlRcVxI0YEqol3IWl9z5FRWLphyilMGYxWxkI6QwehSo0NnnQUiNghIaNDWFQsKgLWmFI4xEZJrGm+hIC+aWKKQMcZZb9K6irFGMUOIJJE4GbhtqlxSjqpqwDhna7LeWEuVY0KJXMC7+iaU0kRulJ7HsalujemBKiXHKJnXK29UIlyOFx9q56wlYM5SVoviKxccxhgzg7HBeZdFS8oaY04ppnw9YbBgGKh2ld3QGmOO2RkXQpXzmuJgqPHW3Wz7d9NlOB8VIC7LtcdzTrmqKiiKaiDLsFwMgqyrr4Kv/Ga7k5LWFW1VF+El5dbY/s1ftbtX8zQKpwvbtu6sQ4/jz19tNTQp58fT5enpuJwVMjfkbyukdCzj+4MuL12zd5WoZIt955ecvz/er1QlBUuuCSVHJrZNqMtSjFBOmYVdV2NlFs0IGIskFV/VVfCco8QVckniyqU8HM/GefLhlDQBkFoC01bGVc4Gl5FFUQKRGGsrJ2QAkdDOJVKyUISFDZBDQIWm8kJwWUaec1dtu8qtAuxaGxpFTKkwKlm0V9A+r5pTrblyYes9xSXPk12XtWR2xhWwRRQJ0VrrTOdcgLjEmNdJpQgUUVB24Jwj40iv3R2AQCDGgEFPxqtYWw0mW+N8aGJMqeRUchZ2BpGAyFzZ1leRbko5ritwyYR8RWGASXldY7zmumvnhstlGAYiU1eVgnJh69xluDCLAhxPJyJyjpizahHJS5xTigrKoqwsorlkYxzSlQaoxhoE5ZLncVQVX3kpHGrjQlBjmLmwqqtvfvG3sIx5nkqKoIzWoKHurXf9DroOBF6dhqfz8f6H3z/++JuIyyUXlyMDN5uaHLGgcRVkLjmius73IWy4PWjV3glNGRMbhLCOMdggIkuJicpaEguHJpRkO+fruhZlMICVzZge5jzM0/E8NT1tmm0ucVqLI3AE4brNgKu+GIsBJfRqeh9aF1zwdskLoVIG4RzQe0RkqTmhIkmWyP08g6WzWg47t9nlnHMcgLiypgrWKOd5hDKTpMqmlpXmiYfZl7yCCBotConZmZQ0sTXBu8owcpzyecmghGSsceKQrRJdZwAFSvFxwbQCoCVrnfdYXY/TiXAcx3lerh8vYwzZz90uVWFBYU4xrstcUrSGHh8fvfe+bq+UPjSu8t4T5pznZRHVmKK1logAoTDnUiCnGGNd103bA2IuJZfCwmQMIMW4lqKlZFrXpjEKgES5iA91v6+toRjXzPlaTbTWNnWdrmkAKQCUE1rTum3n6CqnuHIyjRbJoxQgWx9ebl5ub2/7u+3p0zfP8z0yFrIwR/Dig29CQwYtGO86v5VEt9S+dP02kh8TL0lFiHbOkc2qa44Tr0NcRl4TpFWWvm4sQZwG4IIKqWhRpKbxZKlpuQnCRVNUUrTWWATQNU4meEvoyQBSQGp9ddP3rgqWVVLJpoBFCIYCg5QUn2aLug3OeyPHkxJsupvkbO2C5oIqRGiQqrr2KEOaAVkkc+Z1UppWjAkQjEVEYgEuAmhSXhdmdC7UNSIYYy7D4FyoG4feq7WrlpQLJa2TcaKSVpdLcM4YZ+saxYcQur4zxhQuOedSymfADoBc5z3mOvFVES6lcMnC6Jyr67pqGlbMLEDWW3c6nxXAez9N05hSCCGEcK20lpyvB/KIWFeNcTBNI7OqkLVeRNZ1RQRmWdfkfS181ZMCGWNCIFCeBRSEtRQRVeccKgmRufqusVYiNJ8dppIYEE1wLCAAQE5sIGfrqv6ib6rD7sc//tfzOotdkkRN0eTcUWFGY7u+Dl1VFehNfcCqNYopr4kTFDBIOeYsklUUjK+6rWkuw1Egk5hpHJZpsqRSeEmrOlNvtk3VgveZkLztsCYWT8ZZyiUNy6VqG195Z1AsoqhF8MYAiHV01VAUA+SsdwqpzMPjMRBsbg6VwWVerKXQK2MiGXIcPC/WBFSWUthSEkhgjalW1RJFMxOgMQ6cZWeETFGUAilTXItgThGrEIgcsFGDzARKn3VjkuM09dbWQEFKZajzztSV6/tp4L7vb25uNKN3HhGvprLrGYEop5Sc95ZAlaxBa1CNIcQ3r18774lsLGWc1yWu8zhO53PfdZvNBhHHaWLmGOP1i8+jReeqqjLWxLisa/I+xxgBwFqL11M20BjXktvroLmuqpLl+fGYc4zLclVzMHPJRQV88GS9dx4Qbd2hXo8UEhdlQQW0htA4Y7w1XskKQswAZn/z5q9TkbWkUdFgOMech1OYIjC0VbOztWf0wZhceByHGJ+HaVwSs67DusbCAOypONI6+NqVmER4XafT87NFbvteLVdtmGJ0hNZa9M44xwSwoubsjPXWDiXmZREQoNqSAaKieS7rlBdmsK3foqhAdtZY0wBzETMnQW+GuBYwRLbrm7pCkKGsyzoPXNRWZmGeBgHjLqsUqEIwjDiXNGFRC6GurQ9kjSCKSI5M6L3XkgpOCsm64HbhEDnHmTktvq6rtvZtZYy3BJpzWoW42JysjSh8Op1yzta6p6fnK5oO/wKdFoBSCuva9613TojY+eKDo89QmJxT4TWzLvNyvFyGy2DQVHW963oXgnHucrmM83y+XFR1s9lUxqSUXAi+rqd1dqFihQ/3n+Z5ZtYs4q0XMDGnLBxLYYAWKeVcUmTO8lnRQMxcUuZSms75pvk8C8gMAsIFRIjIOvtZSyCqOSkBOjDWWdOsCRjrV69/bQj+WOSiH8ClVJiXlVftsLosquPc1Gr9FJVP83ga55QyIqQplSK2qdE0C2Iua0iWp8mpROHL8PTm7ub1yxuUAogPT09EkEsWUM2pYrYCoOSN8z4Al7Ozl3USD13TiIN1SZJFo1EAS8mjXhVVhjUYB2wXDk13e2DiCydv0JA3oFVZNIkuC2clX4mYTJBjSbl454lISnHWU1UnzumKEVXhoqQoRbwLBoFEQcQm0Jy7rvbGnaYJAqIlEmtMVW9r5aLLnHLKSVKMpkiP9eV83nUvRErOeVkXETFkIuecsyqKWuevQ04VyYhqjYk5xjXlnK5PB1XUz9oVRUJRUdCmbWNKMcZpnkQ1xrWH3ljrQK2z8zwPw+icU8Dr8bz3ob4OZYkK8+d7IFIp6lwlrKoafHC+KizOWgASYVVx1gRDBMDCy7QAF2cJDQkjEJKxCATkBFg5gwiZyhWXi6v37YsXv3r344cfPj0Qiq18khSFV4K5qAF041lLZKPTOi3rrKJd2+wOPiVBr9gCK2fMCfK0nhpnqbAL2nV+U9u8pGWaWy1lzRwjsyiRCHjvVXRTNZuuy2mtvJ+RBWFGjhxNoMKiHI2iJfEl57QCIBZvfVXbLd40XbvrlnUsaU5azuvacNrXBGSiwHmOtY+m3gTreF07R21toKTMc1fV+31zugzjMmierHUODSFlLkYzsJhcSK4UUg2h7uq+6ipxrlgqEcjoNC9cEmq21jlDS85YCo6jiPz0pz9FpBCCghpDJUNOqZRCxvkQuqYxiDGuMS6SUylpnefL5XQla7hQI1nn3bbfVlWdUiZj5nVBQ6Liq+BD8CHGFFPOSNS2LRKN0xzqChRElMh4bwCwqmois67lfB4QyVoXqhqNs75aY8xF68qT9UBUVZU1ZhqnNRYWqKvGWcJc1ulsQeu+M6iSIqtWdStIqopiFBnQQhQnrg4dFCHp+v6NmG9WPpFi9katn2J5HIeX+4M5H3k6hsZxmoyswdCbTbfftMucpswjD7Iua0kmVNXGzZeBp/m2bxHzN3/81+V47kMVbKistSzjOMWUx2mp9rehCj3Z1/vDZZ3qpaosLA6jwinn292OU5kZkdV27W4ch0VysZadnwG4qlzf/unxU+HUdL6q25LDp/EyLKbt+hzMGmdjmtpW6zJjXl/tmk0NDZjmpm2dKUlSvR1n/3g+jfGoZIz32Yj1btP3zrbzNJeUK9cRG2a+2e0v85JEh7j2VZ3UXtaJNYcmVFWd0ypr/kvBXZd1medZRYX52qO6Qk7IXDvLIlyARUWuIj/vXCmZjfEBvPeVc9JBKXoZBhZh4WEcyJCoOO+QMNSV8955f6VIO+/IBP1cC70OuBGAnA9t39knV0Svha8Q6mmac9Gm7Yw13vngq5Ryyck6B0akcE7JmGiJKk+SVigrAiknRJC0ABo1jOjQGEQhRWXAbCFZ0nBz+PJw8+W7hzSuF7TS9W2UNI5rty53iFXwBtSU3DRhW/k9sR2ONcMh1LMxXowrMsYlWV3jgpKc6Q3hMFyeP318WFer5tXLV8FXRtSWwkt8Lo/b3X4e5vPxMg7T6TIMkDME46xrG3VeFJJqZZy9rBdBNY1nhbFEXgUtlTU9T1PTVwq6pux90G6/oluYBE0JNtt6fL54TS/6cNe4uxpCnm0a6gJpLoZCtenmdvf+OR+nkQxPkrt2s98RGp0cpgQG+HazHy6524atgyXn5LCytgC9O/Hz5RRHY/raeGOJYs5EFonmeV7X9YpKv55qXQUFxtAVE4bKwMWiA4tG2V2x8845X5HzgJRF1Wpd12tKXEpKqeu6zIVFALGua+ed8w4QC7NzNoQgcr16r/CUzwwha22oKmYuLM76ZYnnYWoqH6o6WFOFumRW0LquX7563fZ91bQIuI7jZtN6Z+bIOUcRKCkbY0SE0CEJGCUxahiJADJI0IwC5ubmi5evfvbND9/Ekrud4xhJ87b2sk55XVxa1jzH5fSqurkhwNMxz8saU7O9Ody+8G0LOf/m46ePSYz1Gx8ISViMcV3Xr2ok54en43kYmqatq9a0zTDO0+Oj3bTn79I//+F3n+LQffEKKs+xAJmSxKmzFoHJ/un9N7e3t/1uG5f8OD7mzG3beue7fbfb9aWkdZ4KAQuyNalcbZViVdcUS5qf5lM12c1dS/k8nj4UAmea52FFY25ev3zZNxzH0/C8321vNjVIOj6fci4l58fLevPrw3ZTGxm0xPnh6eVuH/JirG2q6ilVQ57lkigYdW0C13WdisS4llI+e1v+8oKrOAxAmEsppWQQNqjGGh+899cAiL3KDhURSJxzrIoAIuK9F5Z5nkWkruurfw8ASilEJFf0oQIofWY2KMzznDMTGS6aYyGk9/cPqrrb9tb4EFxV1esyvXn7Zrc9VHVliAyh87aIFkXwZuGcOBvEknIVAiETXUWCV508IkUgJlQRYKDa97eHt29efn2esGtV80qX0SHYgmWJjAiIOcayRtd4a2CKEaZFKUxqRjLj8fT03UfY3mFlyDijlbWbtgUoxoZknBku4xzLouZy//DlV1/svnwzz/MFNc/jpEyh8qFOgvOwWLIrlrrqu1At62w/jh/83jdVzyDDaWAWw7SsoyOcBw3WNNZg0TVHLishMUOKHBGunZXz+eJmvfVgPaq4KDkbWL1ZUx6fH8h5DNWu7d68fl039ePDczxORMax5tP522//xxdvv9JF+LLO79/v0+u1KAD1le+9ja4ZyjLOy8Wy617sD4cr//AawbDWGLqm2hEQRVRE5mVZpkuJKyp7Y1QLl0KIomosOG+sdRV5JkJaFHFd12u20zq7rmthttZez5yllJTydbwEiIYI0V6vrWVZLpehsFwuQxVqY+2a0zCN2+3eh8pYa723zm38ru/7qq5QIcWk14iyoqAr6KZYtBRDICkJIJEzBo2KQbUGiAFdRJszEINJ4iBy399uu8Pzpz86R3fbzfNl5GmpbDNbIz4QOVhOi3AB2XTt9Hyqu7rtm6eUR05V293dvjzjZre7MSIPn4bL47hp6gJuSCuBna3f/vTnauzy/HT0xnig0H5KI4K5+eJ1YAbnpeQ8R2Mgryt0nmrbYmXZ8QpzguUadg/OGCcpRh+adTiDo76qvaG+s2LK0+mclgIJ0NM6rZuq2t7e0Tw8j8nWlqT+cBpLA9XNfjXp4/39ZrP56U9+1re9uvr+cXj3w9N0Sjf9tvbhbgvP43GYa1p0F+qvXm35cnr44ZMRaPv+5uWLF69uaNM+L+MfpnhGOmy3Zc6o4KzTIsY446wpBukKBGVmFi4izCUbVDBkiIwlUFa5Rj3UIhnnrLFAtohMy0KIaGxVd6wQUwYiUWWRLLykNUuhFA0Z66y13qO3ZIZxHucVEe6fHm4Od03XTvOMZJqmNda6EJAQAH7yk6+tNXVd+xBKYWVJMSYFsQEQl1S4FAKRNaENzhkDakisqjAah6LF2SKacnFZsExTFerGN5rkcn9c3o3nD+9fb27CxqyV+zgPy3SCmLamfyw8n4cpZ868+Pgci7T97csXs9uEwXhqn58+fffnP+e8bjZt3bf7F3fJUHYh3BweLid6+SKV9cM89k1L1oCg98EIx1Q4FZO1MTYvUXVdFzFVZV9uX+oKw3EkMMF4SyYYU3X1YdNOp2RVUObLOG4OvVgbKjsMQ+OCjRdeI/LadJ0LVVO36OnT/enpLMHals15LljvEtafjvGHj+PLm7u0xksm2+6k6/u7F8uxOv8whQtD4tngrmkfHs7fP38KAubh/u08/oRLifHh+OQPd2/3X21EpyKeYS5X+xQURUa4ijcLx5wXb6B2YNUoF8B8hbKKKBKRdeQCmCBoUTGEELyvfADVknicZx/qNeZpXl0wZAmMVq1nhiubHUSvNmxRWFNKnOdpGZf1pXMCsMRYtbWrvRpgZedC2zc+GELMeUUSaz1ZowhGtJRI1oLKPFzaujIAjkhzkSvvxBZFRjJX8hIhO2BHIqDe2MPhtukOj/dPzz/+UJf1tuvI5BLT0+OjdYZcf1+8cC/zdBwQirZ52G+3QTXef9ywUXKf3r8bHp/e7KrQHELXnlOacl4yu743mzYvQ1GZz+lQ73LBpqqCd/M8rXHdHXbj8zuOScnXtRcSDZgs2y8Ob56Pl3TJpazCErynADe7DStP61Rbcs4vOc7Pha0PVVhj7jbNTdcyGUy5IjBIDHCJ/LAwV72vN4+XlTBUbZ1S+e79seTsq8PpfAGlL7/6wjn6sMzfPx9L2J2SR9XnMT66ceAcD5sutB1aF+pxXo/v3g/ny649bADsEiv2hlVTKVfqAhATEoGiIopKZmEpq0pmzjnxX4jPnpDIBRNqQFcERaS1JljftxsRmed1HCZQIrLzEgN6NKRQQhV4SSJgjFHEXJg1KxKDxpyfzycWNd6vKYGhuq6NJzQIFqumavtmTYszJEsWCXUNZJDAEEApKXjvrYnz1AWPKiUmZnUVWXeFVuScFUthZIfZ0moMgDUojApT5Dmiura/2XLAD0/vbHPY1GEpMid++nBezFZKlcNt3xOj2LamvAyfPinhF1/9QqbiN/T6zetmdxON/eOHj/fLEg0qcOZSBRfXpAlvX75x1izLRdnENSPrpm7ybifMBinFuGo2NjBli8KS16snLOXctBsh83Ce2lBFaljUus5s3KeHJyV9GXrvimLt6t0yPRXOVsWiTuM5pZgCVF3P3h6fTm3dLsPc1H27645PT8dxUjQM8O7+qe3q8XJaACaA03CufQ3K01ps27y5u2vR0bKOl8kZNPu9ilxSDCXbkgtTES4qrFfqPDoxiOoQnTGOTFymHBcuSUpRVURDBjebzlijwpwLEAkZJFQAY0xd18xaCgCYZYkAJhfWJaoykpKx15BnXVsRWdJKZK4xtPU6TfhLcraum6pprTWEWFe+aRtr7TWtBsw5RVAtnH2o0TlmDsFXoUKEkjOnElNx1qNxoVYFyCllWRHYGWXMltRaJu8Rbdu2bduV7a6iNdgUKprXSNa+/fKLP333o7HY1s3dq5eE+P03f4wS73Z9aDzMCQmGca6mubYOQrsOY044Ic7jFNo69G0CGE8DxGLn5LOQ6m67HYenYRnmcWhq//Dho/cGkKwxWsA5T6AQ2TZ11TU1A8SisfCaikS21rV93+67H77/LpPkrKcJDcBPv7jFbWWFH55mTrrEkmm9udlQ7echig9sdVOH1199Za2/nMZY5PawP17GIUZrrA0enMsAf/ju+2Io3Nxka0Ib5iETae8DHQ4I9DRNa17tpjemZy3RmzEnKDmxJuYiRYTlmoAlg1quFHBEZJZcin4OrQJdFfQqUrIospCvTeWDsw5UyXDTdCVLyYBAyxxdcLlwyqkUayySsaBkDOacEdEaT4Qp5VJKjOs8z96H636tbRvj/LX86qxzzqlwysmEIJa0KDMXZjLWWWcQlaVt66qul7jmtVQhOF8XkRijAqrBIkqGDUEpBCYhEBoCoW3f7zfbJhS4bZbHH0DjZrM9rfO222y2Ha15/+LldtvXoaISHz983237/a6NJGdrj8Nl+u7b7ebF3e2LcYz3D0+jIWrbpu2hbniebYabejNNzGicJdQinOM6cY7nNCLI7c0+pVL7cDwdvfW7btfZ2q7rDKBN0wawZGsBK0jOVwsDKn16GkK1GaYYqq0rOJ3zuqS+CeO0NE1NKkNZAqIP7jKq8cZYkpgklrbpppTHy7ywiYLG+CXGCj0F+uGH9999uv/1P/3TWtm67aq2vZ8mqxRLisfHl/2utHVRvVc5Pd1vm67e7U4pYomcdeWSi2bJV/kCgXDJQEgOtagqoKFr09UgOmONMZfhEkLd9lXTVKaqkFBFjDFExjmHoHUtITQ5iwJnZgVWBUwAGKsqeGeHYTDGbDe1MWaalnVdr2i14P212OqsYy1SFCA4S6gc46J8JTwFa1FES85cike0hpZ1qoLvmu7+0z0qNW1f1e01TII5E1hrjHNkSFRFODMYskRMimWdZ5a863oZ6vPDM+SIVbvEWDXVu/t7W1fTH+fdtt92rQvuMg6Up96hGPP+49Mb20cb3SHsbrpjZkeGvb/Mi6Yyz3PV7fZ9pzI8p3Q+Pnx4/+1wOfV9td9tiiTgbAjzuhjVHGOc113ogqgdl5QKW0UkE6qgaq3zbbdZY7IIjaN1PH3z29/+4suvf/HTv5oux2W8GGkMwTSNofZzmR+Ol3pTfbpMzbatne+67fP46fjwbMDU/W7KMk7rlCXF+OHdDy9e3P7yVz//u7Y9r8vA3LnKVjKktGk6LuUYc9WpIGYE9H6t6rptCyrl5EsWNolTFhRh5ozEylxyJoNahJH1s8qMrqorY4yzdllXBAjeVsEpQcwxZ9lu96CIYBDF+7ppWgBalvhZq1xApAhEFYVal2UxxgRfG2PGcVyWBRHruq7qqq7rqrqedYgxpq5CFaorXNES5JyrELx3fAUNi4AKAQgXb511FpC6rt9stkj2Gkwz1l7HBcYIgRThkkspzFqMJNe7JoRPDxMkAUUgJ5qbUBlDTdN2fSuap2EyJOfjY5mHhMK1f/2Ln9weDnHl2u3O4/LD/YfqcGfv9vt+uwDe1E1KPJ4vNfnaVYB0uDncvrz94ce5ru2XX75lTsxx0/dxXcbzBVRevXh5fD7ef7qflwe7ZF2TQMwIAkhNUwVn0nCyKp6gykN5PvY89DDlyztTyr7BdX68ff36/YeHtr1Z5znNw87eXeacXSlaJF5evnp7fDqenk9JTdtsoo6laBH407t3w7p+8bOfbm9f/eG//hd7s72MExozTquzAVg18/Mwa0xpTbvDyxfdrvLh6fgMIo0KAmeQcvWQSQEpKpxzRiYJUspVA8tXA6L+pV748u4FoOGSxssZjANjjQmfmxvKouKcr6qKyMR1NtZYb1ENl8KahFmFc06l0Pl8RqR1jdeYWFVV3vuqqv4yqpbgQ9+1bVMTMLAE70peEdV7J6ypZLzSVJCCrwiRC4eq2u4PoW5yKlUVQlUZQywlcxZlAM4l85pFoaRI2UOGEFzbtOP5kxMlCgVyUe2a+nB765r6/umpnE7TPDWVn9ZZrUm1e/f0dLfdvv7q63RMvuk/pGXpPO62pt2U8/TVm7c858k187QWUKm9pDKvU9uEEPCXv/zZ7373r8p8OZ+Ct199+fbh4flKL+Fc1oVt6DbvH7+9fzr+u7/7d5xLWWfHFM8nXeeqrf5v//TLP/z2f9y9bF7t1JrnJHm72f3sf/rbXOT1Xfu7b77dd+3H53OaksNKoylES8qxK6Hpd+B++9vf/+Jn7XEYXr54JaC/+NWvpeQ/fPOt9/b27sUpLo/Pj5++f++9z2uZhunmsCdX5SznYf14PH358m13c/vheFLVojBPcyqIRD98952U9e52fz4dCfHu7ctpWuvaARoRlZINgiViLlySd55IAEUBLZFFSwZU2DojCipora1CFUJY14fdfsfCOes0TdbbaVhj9E1TxZgQ1hDqGOOyLNe00G63V9XL5dJ1XVPXiMCl5Jw2bVW5qq38MqO3hhDIoiqBSolRrbCxa47jNAVfbXc7UawadwVo+GAcWYwS05o4lhRLLhZMVYXQVIusztibw40nyePz6XzOQq8Pty7UT8+nzWG3LbymPK9L3bXzWIGqWn9e0v3jt6/abZ7m9tVLrPDHdC5z6RzO01j+7bevu8P0fDmOQzK3k5PTMNICOcWf//Jnv/nNb8bpHEJYxrF5+eJPf/jTbrd7eHhqu77d1s9//NGi9bcvXqFI23bLcLmcL4bQ5Ln38Hrjv77t/un/8X/pm/A8PP/u+z9XVf/x4wPEI6rxYDpvLkvuXNh1u7razllK5tDSP//n/4JgX754fXP7oqh2/fZ4PP3qV7+Ksfz5z98Y73MpVdOMT+emCsWgs76yvt6H28NtU9XPa/7+3fucy3CeP90/X8azALiw0eJLBlK322/f/XD85punw3672R2+/e67fnPjKwUE46xoRgQyxhAqaynZGLUGDSiBoopyRhRDSASIwJxZmBCNIRYR1ZRizqz4uUeWS1HV8/nSNNfNHYbgQ2iutWgAMIYAYJ7G2FWg/TxNmXTfv4bgVTXHWIXaNc0VmOicsQYvp/lwOFTNRgQBjQtVyekv8Ab01qrajDlJuZyeoQAhhKbe9K1FOk3zsqzBhqbdvfz6J0+XZ5IJiZZ5TTmTobqpkczh7kWcJgrNyzevfvjzn7778d1enKxT6ex5Xsg2ZRm6OqyfxssiFq0NdsgT7Jsv735eTpe3X76JMbZ9P69Tyvlwe0tkfV3dPzy1Td+2fRyXSGQB2DniJO9+/D4YAi7O2nmZoHa8TL/5r9/9+mdf796+HJ7v5/Fxt/3yfHr48L4i04Kp7w47Oq1IZVu3LTgapizMeQWBklMdwq7bEtqv/+brp6fHKoRXr16VtD4/P263/TIt+67d7/ZPp9Na8r7fNk1fSnm4f4pLBONev/1qGac/fvstWUSEm8O6qduy5hjnTd81v/z5f/9v//ndhx+Ns5vDTclqvAMVzEWlOAJnnSMQRPO56sMgV1bytRMmxoJVuu6qco6q4r1b1wWJlmVRlZTYWkSAkssV8ZFSvu68vA/e+5xSXGPTNCknJOCc53mZ56n2BAjDcEFl5ZK9Q4TW90BQUikp1U0vwH3fk63GcfW+mZbVGgzWGTKoLFJKTiLFoKJyXONwPtlg41A+vPuRPFVV+2Lfv1viHHl3eLGk+fH5+fF8qdu26zaZy/l8fnl351wdlykKmGbb3yIN49P4LO3h7mb/nFLbtrikw2abj2PTh323/246nsepvb2ru3pNcRqGpg0/++Uvnx7vp3E8nS9ffv2T3/3bHza7gzVuWfjm67f28nS/rutuswvOVdYeL6dFS6jamNZpLeOY/vTD/dNxOM+nKcmwFBtaQc+CaY3bw7YK+nSZnx8ewVTLGpu+Vet+9pOfehcIzH67S4kNmU3Xv//+/S9/9fOffPH2P//zf3r1+sXT09PNfuu8+7gsIvLq9i6xPAyXxOXHj+/HZT5NUx3Cy6+/dETH52fnApEhKgYhpbWtw9/8+q//43/8D7/93b/97d/9+7a9WZn7yqMmZTYEzlqLIAh4NakrKZer8EVBlRMaYxXhs5cnArB1NF1mY83VxH1No06QN5t+GAYV8N5fU4VN05TC1lnrLF/36LZ470F1nqZdd9d4czo+W9TrQGh1CyK5qkaEeRrrrm/a5unhksrctLu6qZ1zwVnniSQvy7LM0xzHnNeA5tWLF3FclhjTOouD4DyjHE/n292m3+wrZ1aOSK7b7GOOzroU8+PzY6jqYV7auvG++vQ85ULbzVaB4/mpEu2WXNY0ffy+dW2pJXRhwayAde2ej6cPP7776cs3yxLRuSnGDvQ8juu8ItISiwu1WpsEk0Jwzm6cmMK1U8nrOGdAtL7NcR3maYnr3eGr7ds3z/f3I5dE7jQ5sfvL6t68fP3j+092KcfzpaRMn8W13DXB+DDO3Lf9OIybrjseL8fHx8vlPJxP4/n8D3//dxbhfH6GUoJ1PoTtph/mmaW8//DhNFwON3eHl7evv/zCkmHWtu+s6G63TSmn6Yhim6oC4XWdnLX/9O//p//0z//y337zm7/9u39PoaqumgOE/40ybq4XDCiKAKJeZXTAKS+WaiIEUpGskAH5eghWctrvduM0xLkgIhVo2+bx8Smnstlsf/7zn3/8+FFEUkrXZuowDMYQoVbB7rbb3a6/ThodEZcUQrDWapEUkwtV07Zoc1rXOrTXHP5ufwOIznthHocpLZdSZlR2xsZY1pSapndNxZwNwv5w+Pf/+I/q8Jvv/nC72Xi0w+mIaH0wQK6wMIMx/nC49XU9jpfn02XTb5xrUOyPT+9+8rL7669ffv3Fz5Yx/a//n3+ZszmPw/fvHqv9dpKyf3n3V7/+mzcv7/75n//lT8u3L1+8FOGu7959uI9Fqq4bL+MSy7ikLbiUcizcbXc2j09tqForSTXOiYybUnn16qt3kS4pO2kv5vDd9PT4MO923ZhKis4sfHNXGb+NhRTM4fbGVoERcJqalta4tlUTrKv2h+eHR2tc19QgDCU/P9yXmA673e9/8z9u7w5IEILbHXZLyR/vP328/2hCpYbqTb/pN0+PT9MyHcext6Ez7rJcKtsGY1JKUtJ20364f0fW/O3f/7t//e23n56fqKq7qqNrxx1BVa54DyAEEAUEQYUCoiy4rnPtLBmLIAqMpESQcwLQktPd7W3K67xoLnkclqquVSXn3DTNZrP58OEDMzvnUkpPT0/GmFAFKcnZfr/dH/b9eHqc5/Gw2yhAThFA2XFAyDE679qmGec16rrd7qxvjbWn82Wa7i0i5yWvA2FuKlc1zlo7nJ7n46k2gaxZl7k8iu2b7Xb3i5/9yoL2TX/pNk/nh4+PHx+fHgUk1BVaZJG6DX23//Tw+Pzu3cublz/5+icmyA+nP759e/e238Th8n6GP3z7/sUXb8KLLm8b6+jDx4/63/LP33z59d2rUTWrWGOOl8vjw4MhXGIqmW/qOlQtAPm67gHnnKwzrnaBY659u3m1q5vNxw+Pu/7wju63d3fDtHz/fFltO2v15eGLZbzU3iDz+0/nw2H/eHxyXe8qxyrny+n5dFSUqzii65qPnx7Pz+c3b75ApLZpvfUxLv/623/78ou3b7/8ao3zPE/HcRzXOZdcpLx8+/Zwe/f4/Px8fL6/v3fGVVV9OZ1t4ZKkDZvXd29R8P0P74fL+Ut6kws/PjxYX9/e3T48P1nnX+1qBU4gomCvnQ1QRMIrdRUURBWVRXOOntkYB8iCjKhAknkFKyXn3c3m05NRLKFyAnGah1/86ueE9Le//vu6acjQzfambbuPHz+N41g37c3N/uH+4442xlEu0TmD3g2nZ0uwcgbApuu6fiOcpnk43L1UpWG47G/fgPFPx4dcxDvsutpoGE/pcrzcnz91m77rmpzT44ePm6bd7w+np4t66m/3zmkV3OXpmJZV01pb+2J/2HUdejydz4/Hp8K5fVUZa+c1TuM8Laug6fc30/ruw/v783/7obno8x9/NFle3byizv3Lh29/9vd/A0jj+8dUD693tw8pCiiRWtAS18x6OBx+/vWX3333Azq7xPj67ZcfP32ahtGOudm9+GK5jJrFCaKWv37z5bsf3+29vf/wfQF0AZJKvakA837bXo6nL16/mZbl09OnetPZrmYEAOVlajZbAWQVE/zTcOp2WxsqsdbakPIsJmTkhO4c+bTKpjs0m8Nut/vh/bv7p4em3rnKS+Zt158en5QFNdfUJFSJ8enxPJjzdtNt+113aKim//673zRNZ0O7LAnI/uM//J019Hi5v7vduFDP4+BCMC4YxGFedt3m8f5BmNu275taVZhhuFy2OxMqj9M0x8vNq92P9z8Y1mWYwMMlTxMnwXL7Vf/j94Pr7M9++rMPjx9+/fLfKeFvf/f73XajKpu+u73ZWqNg1TVWvbLkEmcsq9PCy/L09NB1XVrOoKtCv5wKoOk3Ny9f3F3GyxyfQ91UlSEQpKVvg0PvTPVwf/zw47eH7U3tK2OMdfaPf/zd0/PDT3721QLxfnxum/pyfB6Gga78Xk4fP3148fpFi1rfbh+Pz32gP//4w5vXX1oTfvOvf1jjb9+83prkh3F9983Hf/rJr3kzg+o3j8ew/fJ/+j/8L3NZP77/w5tms07pfPnQ3d5mznGdvHIdxTirw1TmMTi7pPk4jTegQ1z73daGsFtmHYfYhGAbt05LVzV15ac0GYcu+Kr1w+kpa3wenzpfvXh199Nf/vRf//VfrTdrSTLJ5vZwPp9DXd/ubpZhOo/H8zikxJvOXsap65xhZcK277a3B+ayORyGZfnzD9+9ur0BJe/Dl198XVSO5+O8zssy1973VaUiTx8/GKJtu9lU9Q/ffv+n7/+43+xvX7zy6GzjMdiXr16P4+Kc+/rrt9M8Pj5f5jyXIuM6RMn7zdY7fxoH8i707TSOaujh/IyGqrZ1hGSgbZooJfI6zKe/+8dfny6XhZeZ51dvb//47buD677+2evdTf/mJ3d/+uFPw2n6P/7P/6cvvn775z//+Tgc6+Db/q5I/H//r/9hd3dQejNNw5zXPJ51nhuHeZmtJeNQrBbMj6dHZmqnua56ibFy1gdP1llrFfjp8dNyiX1lX97tjKY4r+fjSVXQmtN4eXf/vuT4/Xff/vxnPxme7wH4+eHBGhqWCS1dluH7H789Ht+8fPv65dtXaHc//vjteJkA7YuXX/7d37ppTdM4uYLCBnz9H//r/7i7fcOi3358tA7/7su3+/3tzf5uOV0ez3Pbbcq6no5PhlRK7rwfpnH/6uXx8UnRrOsauu3HpwdGPB4H24CDWEiwZP50fBqGy4Jcd5XF5m5XF4SqbSqemz44kmlap7J8+/6HlZMghKb69PxcEG8PN8Pz6f7d/bbr37z5glEQ87zMx+OxCk0BIjLjeCGCmNZxOpaSu65O6/IcF19V25v9tM4xxeB829QPD/foTGVs3zbzOLVd/fbN28JpmpYkkRys81x3FRFlWZ/P903TFYg2kK9cknzlja5lTdJogf5mG5qaVNccbWXWJGQpShTFYZ2cZkVhKA/P93/z5sWrL19XfbPZ9q/e3v3Lf/vt4Xb3i1/+HMktc3o+3YN646Db1bevD7/4+c/ncdh0vXXGfbJN74vEj4/vYI2V0TieFmuk5JvbA9QVGpqZ75+P++4wzaNzNbNsDzdELk7TUPLj4/08nQnKn8fL3c3+zeuXb9+8+f0fvlvWOE3jMo8Pp+d5Ghjv/vjDdzHOm01fDExpvazzaTqfzsfzcG6X3V7KsEzPl/Pj8fyTn/7i48Pzf/rn//DFlz+1ltqmv3/3oQr14dWrbx//eJwHaDtTOUD45ps/NptOuFhnTw9Pxvn1yHVV5bx+uP8Eys/HZ1tXBcDW7ThM9Wb/9PS0zDEPs6WVfe3aw52p/BBHi5oqO8XJV6Fpq+F8juuAktqubiuvdZAsH+/fV1ULaxzHaVnWOabaN9O4NFXb1t3t7e15HeqG7u8fAbRwylkOh8M4XBSkrv358hAq//Nf/uzDn9955xV0mWZR3rRd3VQEsE5j3zRSSheqwYWqCsN4vn15Y46nrutdhTBxuwlcVE2pe+c8PF/umTm0vjCACHla5zVD8dY9PD7sbnZ3h5v9i8Pj/f3mxbYUvsyzc3WGNI0zM9d9ZQImXncvdn+za5Z1ff36zf/5f/mHl692+7sb5/y//vff/vxXP7ucp5Xn/e3ub//hr//+7/7dH/7w+3mZN5t+d7dt+qroOq8scaHaZyp1HTx5DjZ7Y6vqNE7HuH7xk9vD7gYEp3kw3p3H4fHpVLQQQluHl3evfv9vT/M8/vBD7Dc39aZ79/BRQW7fvnr3+Kn11L+4AQPG1/fjOee02faqHsU57frK9LcHCv7hdHr34T05+29/+G3d9KG2f/zmt/v97e3dz7c3h+OnZ0Wo9n2o+vfH4+uffh2bMJQ8DJfz5fTXb79+1W1Pp/MSl5sXN++/f66a5vn5sen7tt+cxvHh6fFwuAHQcbhYV/3k619Q42tSNMY2m+327kV3d7ui2L7zXUUEBsTm7OKC85iGS0XkUDdNs44XA1A7/+bVW2fC89ORWV+9frvG9Oc/f//xw70qIFLXtczlcjnN87Cm+TIep+WsmFOZf/jhzyJl22/qupZSLFHf1AZhHC77fttVdVfVtQt/9atfvX79Ismyf7Hb3W26XeMbd7jb9ruu6n2zCV/97O2br14ueXg8fgyNd8GP63yeLud5GNcRA3WHDgM+jU9R1qfLM3i8rEPUZGvb7TvbWnFy9/b2659/ub/bKpV+396+Omxuu7/9+7/+6S9/CqQsudt1//S/+8fNoVNTDi+3t6/3rqFu16gtpqbD3bbpPdi8u+tMTXNZoDLd3a693SWLE/CMeuacnK9v9vW2X/MaOWZen54fxuVcyuqD+fInX77+4k237b/+6U/V0G+/+R14/PU//N1xurx7/Hh4c/fmFz+ZJLcvbkflC6f/13/5X394fty9ef3iJ1/fffm2udkXa1YQdXZ3dzDBzXFe08KSnEeA9PDw4bIsWFfvL0e335zyWixgsLZyX3zx9tXLF3WoiUzdNKfLabPdfP/9d7/5/b+1235OyYa6qGZmBdzfHJSlrsI0XETEtl03pfUyTSeOUPun6XweToddf9M1aV3W43ML2KcUVE0FZToaoTXL8HTq9oew958+fHo8nfY3d3XV/PD+Eyk8nj/Z2jpfresqIinFGOfj8ckHdzo/pexvbjaI+vj08aa+LSWnlIpk7zCllEtUYUQYLpMjU1dV7RyTVG2IZREoT6dHJV3m1Ri7u+mXJXJJTd2hLeQULRowYNBVrmiZ4hw1VX11ni8icrPbUkMfT59+94c//PyXf7WUNfASOWbNh5d7pq9C2+Wc1djtdpt4dDXM60WVEWF302eNdR8iz7rInIbj+Pjyy9uH04eV569/+bU1/HD/se6rNbl1TGjdAhmBigWRXJYxO4ttPUl+nIfv3n+32e+c1pc4dIeNc/bHH7+/fXM734/ffvixPWxf/fQr7LpPj8+uar742Ve/+c1vTsPxH/7pH1++2D+ejv/hv/3LP/zj33/5N3/lD9tjSdYZ21Ut7cSaTFhVYdc1r6rw+9/9m7G022yfnh5zmav25Z/fff/m7uX+9cs8Zb938dMSJTFDI2W4XG5vbsZpPA+zDX673w3T5e1XX/a73c3Ll4eb22mZ5zW9fP3aO0+03Bx2x8fjhx9/sMUoVTZNy/H0TGsQq86YT9+/3335xiyLP029D2/3+9DUWrvT46Xvuj/+/k97Gy6Pp367b3z48osvqm6Tkzx+erw93NoQ+r6e52mep5zEe2et/fjpw6tXd8JcV8F5m9LadlXbdGtap2kkZ7x6VU4xlhibzbbuusv5jN5996c/V/vGNOb5dASDa17JUYGMZOq+ntO8xBKaquqCGs2SyLpu22/2m3majk/PU5zGRYL3283meXwe02id+/pXX4PFx8vzJU45Z7Kmv9lubrdV0zw9PQ3TSYlTSq4yz4/HUiIh9f3222+/2Wz6YTo6F1ae3z+8+/Wvf61GHk/3VWNfv31zOn9a8kgO+kPHubx/+hiapm77VMqatW43Svg4jWFrH+NJi8XJvT99fBFk4zdP8/HPn75zzp7K8rt334ab/ud/+1fn//xffvz4bnPYvvjqzSYe6k3/fDlG4P/r//P/Hupq5pItLlI4LYSyub0xhpyza05pnuTIL998MY/j69cvfvrTr3747vtlmV+8ejNMC7hqe7NHhYOFYZ1UE53dhw8ffvWTXy6Jb9+8ukP545+/efP2zd/+w9//8O7Ht199eXv3Aoj+03/+F181u9ubJedU8v/8P//vy5QtVqakUlD67fa///63r169aqo6tOXH3/7xhTV/dXO3Yfnad8b452GtXfv25s3Lv9n8+cP78f379Tz54J7npb+5PQ7H/mYfObPIPM/7/aEwewdXqM/L8NI5+8UXb62jZZlV86u710HD8+OZ6AouFgAoJQPANI+7vr+7uV3GwSDEdVbjna9ijNOyfPfD9ze3N13fPp+e53UuhZ+OxTmPiJdpbJt+XlYBIURGSZwRoPG23XYiZfr4Y2XABV9U1hjRUdM3VV2dp/PxdJIHbtuu27TjdDFELAlI7m5fnM/nm5uD9865cDjsl3Vd82SNeffhe0Hut72QfPj0brfvx+m82222/ebHd+8u69hXfh4vDLTZ34rBZYkfnj7O00la+xQvTx9OOZR3x/cfLp+o86b3j0/PZlNBH/7Df/8v/47LEOeVkxFbdU2777//+K5qazFUdT0ZvHvzepwn5my8cwbmdRXVvmub0BjyT0+PmS+3h5txnL/55hsA6DY3PlRv3nwVjH14/3FZJtsGz6bu+2VdurZ+fLr/5U9+xjGr5LuXt5vdBgyuJceUzWUQMr/6m7999/79/cPD/rBd17WufFa15/VURFxlwds3r14ZJCj8enf74/cfe9++2dzg6QjjClkpc6jqMixO8PXtiyGV8ZrrIno+HU/Deb/dI0iSVFFzdRxP48ws1rorGCWXKMrWOFYYLlMywCpFtLJWCUrJ1tlu26Z1ERYw4pxDkEQ6p8IqbdPf3ggA9N329vb2+fn5ch4M2sPhxjt3Op3jGjkrkbnZ3zjvjDE5rVXjXe1XziVFV3kbbCpF1drgbfBZCs+zcUQEKSfryFoQzlzYe7/te+/8YXfYbTYpxmWZ1ugLF+9M4fz4NLAW6+tlXc7P564O3ttcymW+FM1VX5NDY2zXdGRhnEdhiSV9Ol+cNR5dXYWY8vly8s6tS7w/Pxhj67aL5+dlif/9d7/lJXln55wenh9fvH7V77bHyymX3MO2a7euCu2yrMt8//E7dWSMTUs6n5hb9VeczZrPl6Gpa2vreRmPl7P124/pYdM1vml8U43jePpwv5a4P9x+1tYaisIlrYnTjx/eHW5uyVqDdJ5n68NXr18P8zyNYwhut92+++GH/W5jBcuwDGR9W+9+8fOf3X/4tJwvYK7MSprWdT4eqZRdVUUFKfz8/qMC+k2/vTmkvEpOaHGaxpJWUHaOvLPX4O+6rA8PD+uauq7b7fZVqAFD3fiurY+X4+V4Ks4YR6JgK0eWGMV4xyq5ZGeITEDCeZ4TkTYhxxIs7fuDgFp0ksGbqqt7QLBXAXjd5jTP09p1m5x5XVPwoaqCMUDGLMsc18U4hwbTkqoQVAEJSykA7NCoKhGu61RKBGUEkFI4iwAftrtlXErKlXeX03GaJutcymUcp/3+puv7ZZpd3ToDqsqlFAvWW8+2rsO4RFjnNV6WJXX9lkgu87zxnRKHxqXiaBSFnHmtbAWEWVi5hLY+Dmcqsg+7DDylFQj3h0PM8TzktKaJJmOMM15d3rStlFhKcUTBB0sO1XTt/vun7x7un968fvXixa311TguaUqmMSpQQBTZeNO2jXO2rSoDJAqJy2WZh9MjaWbVaV3mvGYh68Kay29///vT6fT65YsQgrP29vaGOducpyqYuqnXtIDzwdnucPvhh++XUkqwvGmQd9+ezvAprmjruk5LAtHx+R672h22aCxIcUR9V3vUrqqMtiLleDw+PD48PT2LgHc1ouWCqWSD1vSh8v3soho0wSszWqOE6I03zhkzDqdhyghqWJDIWu9C31bEXAwZ45xRGk8zEmzaTUxxGmZnXd20u6468mTALFOcpmm369quXZc5rklBlnU1lli0FG727TjOMabPh8ClpLiSwXmarypIQCyiBkKgEFx1vpz6pm3b6sPDx3VZvAqLdm27P+xV0FlHoJxm1gKgNVZN0zZdm3OJz+M0TyrGkusqb52JlpB5iUtFGKcLr4uv633Xvn7zioWejkNeY1O1UNHp+CynJzImxvXp6WG/27dVsy7RKMVpNUTee1tg03XLxJyjNT74xpqAaLJEa2prwId2s71RNeMlta5ufGeNf748x7xsd93ty9s0r9NwVoXd4c4GH5p6ngxyWWJaczLOI1glYxSBy2aziTF1bY2ELDKvyVYeVNEbTcolxuDczfaGhJ2lC/Lvn+/7ylRf3tT9NmcpSpg5kD1+/Njf7pqbw/PzPSQIxuw3vVOqyWBwz+dxuIwxpu12W1fdzc2Luq4R0bBaVyFVBksdOiVWQlVccsICSIYsWW9dFbAIIaChum2FvK/67W7/+PAwLzMhhLbOOXNmzspZVUgJOHHf7EtCRPSVCy5UjVeWnJk5VW0w1lmDpRTnfFU147DmXIwxzhEzp5TbtvbGphjTuq5xrUL9cn+DYp4ejopl02+nYeCU+r51zpfCxldS+HyZlNVKIoDg63kZj6fn/c1+f9indVUujmzbNc7VFWjJOc9LWWbNyUvRkrd16Pt2ntb5+dT2eyv89HCM03r34i4En1JC4bqu5nm2ZEJVO6Bdt1GRFJNTKoBcxKHWznHReZhDwM3m8Onpsan7tt0423Chtt3d3ViIUrLM07wua5ZUcuma2hE9PTyrIiJmzoUULCKSh3AVMgKRvTJyQhWX6fs//0lKmofL8Xjqdge7qavLMPJq+rpTMAgKhN3tTbVpROI4PA689qF+9WKTkl6OFyn5qxe3DrLf77KjAoCWckr729sAdrwMVwHxMF6cq168eNNUnbV+s9ld36S+b0FMXBmNA9IlzQo6XSZm3vT9NS2vBD5YJCOlOGe8q3OG09P59HwmItJSbLm6lYpkUmMQHRpQyoUNGgB0JnjnruRqUMgl3zY3TV0VLss6dzYAoHdeCqWcpLABdWS33VY4K7OKjQKk6p0z7IZhYSjzOL//+E6V+/0m1NU0r+s6D5cpZW6bzhgbjO02nQCfL6fL5cJS4roaAC2Z48prmgrXTWdZU1pJZTldJEWD6kRRKfOovtFUDOtyHp4Qbl7ctG09z/N+v08pqjCJ9l23adrL6TyfLmQMaGl7i+pBhAFQwJEJPtzevHDOrSkWLufLLMLnp2ODfl4W01rWwsLzshBo7Vzl/Hmcpnkilcsyx5xrBOdcLEUJEAQAgjVItMbYtC0ijuP4+s1rX21tLlYhGOtD5cZhFUFL4Nt+YCUfRGFdL0vmh9M0ZV6XlVijtRLC4zgBkSoCQ4kFBJuuPZ8vuaiiRwpV3YWqBsI1xx70Wjs/jxdmXpcl1E4R+KplS9EaSyy55KqqnZoY1zlO1mDX9YQyjc+n43le1v3+hgjHYfQheOcRrSUwxjjvvffzmEpMRBRnFBRjtekrgUxOXW0UDa/ozSa4ihcxxgXjUHSaZzHUtH2z3U7juUzFeOy6yhGWNG33W1X39HyOs1pQU/m4LktaE0tKOafiXV15cldBBkBdNYfDjXe2lKJFVTGuMS4pZyEyVajslX5KGKyj4K0hZ11cU9t1Ciwl7baNAA5xTrGpQpXWlUuRXJIoKfRNC5zX8fLw4b0xpm78/vaVWljShZzZbjoyTnRVTGuORKYJddO08zRdLoNUfilLJVXmnCWzuHldh8tFBRPzuMwVITL3bY8pfbq/R2NvX74CcufLaXx+vHvxoqSUcmbQpm2b7YHB2TmFeS1CgDHlsijjOo8Wakym7Vof/CKeiMfjnEUa3wDp4+OJi5RcqhCMmjgvgfwwzG3Tq/Wn08VXu1u/SakM09K2LRnz/bvv71686HfdZTivcUVDsSRv1Roa1tkovrw9kGgaV2vqvtudL6cxTr5ui8J4elAVH5iMyWkkbC2RFJniIiJVVfV975zNOTcByhrTmqtQo3VLHk/n56WM7TYM6zEJsNrN5m63uRk+PUmCytpN3Z/oNMWJnAdrMLioLGna1VXr3OX8sWmqXEZJF6YSQInwabic4tRsNm3fhSKyZomD7zaqGmNc1xXVoNoSM6hV5qbtCSil7JwzzrS+BoVhGrMIEcbEgaxaO6SV5zFyJDJN0+7vXhaAy/k4jpd1WlDVkZ1Ox6lpPYhFCQ4I2Bsa18SGLktE1GrTsC6FJ/Iynce66uOaHNHN7iZ9scz5VM5pKkVVjffkLCtGgWVeQqgyl/X0jIBVv2n73cP9oxZxpSiWwLHEFdPy4maXcl7XNfT7CPbdux/tOEUia4yJKQ3jEFwFoGtcralFsGQGNTGtyxRtXRkkY03XdgCqAoRQUnbWee+l8MP945pSFep60y1zHId7a9oqhJxzXQVnjSHwzmZnVVTpShpSUkQGXpOwYlFLJk5LWlPt6/3mQIYGg/MyiEXRaxxVWASZmdU5v9lsjTHn83mexl23C947T32/LZKzrkJsmZjLkpY1SWYnckZ2bdNoLvNl7EP39ZdfDut4Xi7e+4enKedYG0PCmoS0aFn62tlNh6pximuOXdtUu96EYKzNa1ZFZx0zT9NsrQHAFFOKWVVPp3MIoa7aEIIxkbmklEPwqrrfHXLJ4zAaa4BMyknSDIgxpXVZp3k+AJKvUlyRcLfdGDLALKk45+Z5Fi5d323aNuViBJ9Pp3Vabw6bvKxxnbqunS8XXrOgQzXoG8PiAJdlabsmxqRKwYUSC7MoIDlng7POlJRzKg/393S4u7u9+/Tp0/H5cbPdheCIyCAOpxOK1G17Gecl5svz0YYqzPNlnKVpXNt3UuAyDqTVqxe31oRpOguwqLCU8Bc9kjVGVdFgXNdSivM+hICiwlwF70ItCGzwsN0iYlpmMkQgkiM74wgrb0UUEbOwI1vZgCQoiqKWDClwYRAlAgII1qVQxbSqGlVRwc/GOOWc2RjrvS8lT9MYY4w+eu+Nr4nQoHXWz2khJAQCQVDgnMfLwCtz22Iu8zzGcQyV6ZoajcRpTNNoFSwQsVbO1Z03cV3mNc/rttuavp8kS6ik8motKzApOfKhLjFd6dJXjowxdMVVWWtzzjlnEXHOOedyLiyy2W551jXGAEEVjDEppaqqiJqUEiJdLmPMJ2MtAbIyIdV1QxVcMZ3rslYhNH0vw7AMl/npySL2vuJS1tOgS1qGufZV7zyoscxlGrHwq8PL0ITHx6d5WSSztdaF6ng+FWbryZN1nnyox6dxXtamCimlZZpEwTjrQ51LOZ3OaHy32z09n+dpdMK2auopDjGnzlZ9W69zmsZY+Wqz3xmyj0/vU8nWOV+FK8ObpSzLwqUIs6o2VW2tLaXQX+xJygUR2uDb4FLOcV1TZBElKSjsnasMCSoioWYwwVQKIpWtjIEMFhi99bXjlPJwHksrokBkjEEVI0AABpREQERKKTHGUtK1oC5a6nobmn5eFuvc1m/zZVFx3hoTLFlQScucLktunHGKdeXzEj99+hBCAI9zmjmlxllXMnFpm64J1enpSHNqEHtnk7V5yUvJkrGIxlK4SOMr4/wyx7pujTHTNHkfuq6/XM5N06nqsizzPAFi31lmXeZVVHMuOZUYM5EtRZglZ64qqqoqpWysRXIMFHwAkRzTktcc06br61CjyjTNy7oua0qlALMTUOXldAEVwxrPQ+fqruo84DKvisULtsaC9eucrdhN06eSkKiqmnmZ0zwu60IWjLOV9/vbfcBKmauqUueZRTVb6+O6rtPsGnRkLBGzOEQb0xqCQ6QirDEqaFXXwTkySIgCyswuWOusMDNAKUWYY4wpxk3fH/YHEZmn6X/7prX25uZQBT9NQ2XIVdX9/T2ALjkaBdO1V3ocIqoUQxRcsIqejEXr0amoda72CLKWmFeMQCxyVXIDoQU0IBYRAfw1mFxKMoaqKpRSyKIxeI3T+6rewW5cPqvWjYIFC6ql5PPpZFX3TXd4dZtjGodxXeIcp6pytbPA7BCpcNsYdpYDSJYyDgxoQY1oyZJKnpZZhSyFUkAVnXfW2AkW53zTdMu8qJB1aG1AjKqaE6supQiAni8jF3bOEVkRHcc5pWiNUwEASmuxwTjrhNl739YtM6/znHI2QNYYAJhjPF/OIqIlWiLnAyGpqGR5+Pi43W37bmONAZAYFxQG5+d5OQ2D8+5wty9SztMlx3hzc2AtqaQlrlgwlXxoD5L1fDwzS1s3Ka8pJR8q71wItnBep8kSgiNekh2moaqc8SblpeTsra9DXTX1OI8gWLgIaio5xohgrh96g8illJSVJS3rPM+EZK15Goac82G3Uy55XeT6r1L1lriw5JTWJRrkwsuyAKp3lXU2WGvBEJMx5KwvmZExuOB9LSCx5FgyFyFDhBatQzBgLAhUwddNhQgigog555LTw9N9Xa1Ibl2jiabuqr7bznEYh3lJpRSyYMm6cbpQKVa4cS54p20NK6xxqqz1hEi2BlpOQwTENeqaK1dVLiSkeZmdM+hDLqVkLkWCyytEUCpZENRZh2CE1Rg3zyuAv2IZichajwBIaAwOwxxC6PqdMdZaA7gY6zML5iKK8xrLtPoQqqoOwRAZULj2Yufx6H1ARQWKqaiyM0YIXahCXc3zPKf8fL4My9r0W7I2lrimlEqqoA+hu90G68wyLFmLiqY1+cpdyfzoKXOKaY026lrmdc25uI2z1sS0VKGqmgbJ3D8eT8/PVdsawqpv7BUHWLjktKgWUhJfCGEcBhU1xnhrmRMqiBRmNkSgigBVVRHSMAzLPBt7LVOpM9Ygxnlha7xzzJxyrn0Qy8xiEbSwlCylMBcDRmIRY9Q5ckFAUEhYUkxgjK8DWaOac5Fc2CgZQkOEZBEt0ueWVikFQEWYJcd1UYGc1diqZCUHih1aYVYVREYQAAZQ9dYYS3FdHx7u27qxxgKLt+5KPLNkLShzPD2f58sZRV+/ent792Ip8rxE74KvmmVeDHkwCoLCKoUVEdEQORFd1xRCE2MRUWa5ahEBgMhYMte2q7HWeS8KhaWq61JKKRxT+YsrWK4s2JRSWlZhTil/bsoye+eAMEkBFSFgZ1fCktMU1whYHw4AepynKWcu7K0LXdv2fe23yxIfnx5//PQODGz2vWv9Oq+keHWbG6Lddt/azZiiJYdenPPeOxctIRogb50xmDhLKTEu9aaxbVWlsi7TGNPsnQndtq1rznmZ5pyzRTQWVTR4L6KlMBEJ67VMfmUf/wWmJJtNjwo5ZRU2VCOAIWuNgmZQ9JW5SnEsGWe9qipDXmNOkQpYNVA0gZK1osApryWzCotkLYIAqmgV9DOQFYlEZFmWnFOMMedEBp0zzgbnfc4qCiAwjgtQBiPOeKoCrSUm4cKhIm9IuazrapSc96nk610kMxilnLMzIac5skjmeU3TmpbMoghquEhJTGjRwBWqCkjG0hU/xYVzym3XVVWdUgQAZwOA5sTFiAtV5qRIqTCs8Xptee9ZUJRLKapC1nsSRLgaEUlBVed1NkjeekDIzAggoIgwLDE03jqXSlkAJYT+9oWzNqU4r6szxtceGyeO1hg/vPvw3Q/fnseLazyD7M3OV6HyIWvKKbvg7m5uK+x4OknDudgYk3ABlaIyjGcWqIM3rDktzLyWbFEURFCFUL2zTVW3TT0e4+V0GoexCm6zqckogjrjLLlpHlGhDluDlNKSYrTGdk1T140qxHmOf3m7hVEBQFGVjMGqqrwPzJxztGSddcswExogMuaqBABW8QabthfQ8zJP06UUQYfWWQD63C9lQQS5cqJXXtc5xkhGQ/CbTeO9Rw0EoCoiKkVYBQwDsiCioDHGo0NhVQEBowRC14J64QIsJEiiWlQLADlse4jlHEv59DAznJbVkGHmeYk5ZQQEcELa1D2g5pRSZGYm0pyZyIokZjDGOWeZJZWUMxvjkJyI5CLWemtJgQAJyZBBVSa0KqUkTpBCCIiQUvauQgC5Gl6v0ntRAQVnxbqMhhHYBHGWQMF5Y1wxawGeJMM6ixgzm8zpChUhg5J5mWYwAIRg0QhxzKfHc1/buumqUI3DeTyfUkpt1RDg6XxWwW7TC+eYy6bv1IF9+PQpVLau66721kKJ63A8xVkgFxLQXCTn4Kwhu8ZSSlmXlRQWYyWEK+q7aC7Zi2cRzSmpKoJVQearwh0RqKmbtm2MscMwTNOKgFUF07xIEUOEaHyoCKnwNZukaMhYi8bntFBB5ywoqOIVeUmEIhlAAfQKARcW5qzAokUYRR0AAYgy5lKAMqAAogI5tGQMZ2AVFCUwwgJF0JAxAVAZuSBag6osaMU6wTJmHi6zKBZrmCUuMRUWEU/OKJIiAaZc5nmNMdL1MBYIFLkIF3GVv65gOEYBdsFbxJwzMxujiPZKowYgAEW0ZAyo5piSpuDD9XZrjEFEZr7+qlxdsACCwJmLFi6SsoqQNTYLZIHEgKCYhVI2vDTQ+OD63cY1XlGssyo6HC/Gu9AEEU05H+UoGxv8lhBEITMDCzvOpcR5VqVQVSDiCKvgF012ulwMdrax1pCUPMVhkRUkdE3TtR3nRFCcIeuDSEop13VNgIXZqzZ1460rpYhKXNYrth3JKBIroCoqKhIQpiI2FSRdYoqpXFHRRAasMUiEVgRYuRSOKcfCpvLkXdP1BYBLAgAAFMHruYzIlQKuVRWsq4zBwglAx3FQVdDKUGuoRqDraoKLKDEoEDlDaMiIoLAaBgBgViUl61wwogpS1DAokIMsHLUocuHIws47VzcJIQsDgEVr0Tmynsy6xGldrrTyqqoQjQikVHJmveJXAf9yE70aoQ2RigAAlXJd23AponqdhhAoAZAwlCxEIAJojAIogqqKCKuCqqiyAEnJIDlJyWyNM4GWaWUpyoIogshZkhSSRVBdsOTClbsPCFKUBK2SoQoBNcJ0XkcsIkVLAkAkSjGltCIQoA7DyfqqqhotzCXbXdcH7zTluKbCidAaQkehrevgqxTnVGZLZI2tAgGisxZU4xqNMUQYQmjqmpnXeck5IyCSATAqyAWIrnp2WOaYYiZjSi7WeOe88zWh5VJQQIlSyjHFmLO1pnAxoM4gENkQgAgQ9PpgVFBVABGRKzSeCImIFA3Ruo45Z9QSvK2qQGRUUYVUgYVBVQnxClZUlSIkBsiwoBIgGjRBJV8/2QyoRGxsUqOg2SqCOF8VtFFSFmBBVEUVyIUFl1KmdV6XlYxxltc15pTX9crVR2ZJa8qlACDiVfMDZIxFFFVOOZcsfIWaw+cnlKq1FgFLKQgAgIUL4bWnraKf4dhFFciogArnxMLqvLHgkICBWBWBjAKyZk5pXVCURVX5L/wA4MycmQCJXIlFUZKfsiKX7EiDtxYh58xcgnOFeZxmL1hXdVzXlJM97PdkQGRd18hZgMR5auvGIKGqNYYoGOQSkxRoq0ZEuJTgQsrpfH4Kzt0ebgloLOM8LajUdp/fORHQK68Q8KqVyLmIABlHxpZSVBRUkcz1zFyuzWNjnCFBmJdFAIxz3jvJCRBUABREish15Es5J06ZSzYGrXdFbc5ZVBTk2mXmq3sQEMsVZk9MrEooKFkF8XrEq9c5dymFi3BmFYNEhviKJOcYFQwiKcR5SspCJgujXOXZhU3JgKUwiyhgzqWUIeWEgFfxSin5uhwGRCSTWRTwyldMMcWcckpXgQwiGmMBhRScdYQYUwQFF3zK2VpjrL3eekSkiIioNwHRgioLIKg3trIhVF3hmPOcyyqSuLAIl5RQVUQAAZGc8YjGGUo5cRE0AEKIeNVYG0AAFeYCRUq2hqx1LKIinHNeIwNJKjauyTmyNjTBWUop5ZIVEJe4rmklVGsQxaowZTagqhhMDY5iOuVSco6Zue/6uukNdcCoWpZlIUO+rpEwq1xNlIwEZK9vV5KMmY2yMqtCzkREaNAZimlB56q6dsbFFEGEDKghLvn69DeGvHMAgAginNKacw7OYVUpeCVQoFzyGi/Ous+rpc/3ewUStQxEwXakXpizMEBBKSWxN8GAAAEwlFyGNRfQQoigtbWkIMAKWnJWTM46cAhFppLOy2hCEEJXXdGxjKgewVpLiFeluyoqKCIJo7XWO2tImUspq2qxwTAjIKqgohE11pA1qCKAKAQJVL3JCoULKny2LwgICSiyAouoQe9caJyvyFjMqwgzWnJUIQmwIlCJSQQMkXEWlIqyqCBBkQKAYJQAOEXDYCyycswJjXpvBSBLFhEDZDPAxNdtis0pozpD3toQMKisIhJTusJHrbWqkIsAg0dDAg6cMZUaQHLOh5SmeRl9CF3TVei14LqehBkIBeR6r66c5+uthTyAllxKTCyMmlSKCDCjtdZ6541VlMJFJBu0KCLMCkZZQZEQgNASWQJDFhGU1biKyTmyVq3FylkrLMKc1kkNWUMISiKk16e5EjKRc6ahUKU8lbIiACIrq/lMhzGKUFRzyTkX4WKtNc4CgAgjiiVAIusMOcuGC1wFu0jGWEtXja41RJ4soQCossr1uXN9Cv9/q7qiHcmR3BhBMlOq6tldAwbO//+Dvr2Z7i4pM8nwQ9ac7ep+KHShS4BEkcEIiuEOOsGScknTDNF8ERQS2w2ITjNiqeAm7bgyCVUJCVUsUTBwW8QlBCu4kmvqvu/vuQZQcbQWkTWFdTweKIgzfGcyaaZYcApaNWncsDtIE5Sr1ojOkxHuQZsuWIecU8oUETTbdgEgafauNWv143h+fETEfd+f9yeyjv6ktb0vXCUz8xaOcIim1JAAxqY1LbxWvuaI3o7eizT33hpL1+v1NVdmsooi+XufajT3Dovx+fXr52cKK/M8jqOotXq07VdqQK00AkCtOr2fz+Ponea4vulz1dz83RozheM4jAohCSuyaCi6aHB3waECq1hjTqMbhUSVBGTl2jygRLKgKvV+tN63sLKYKrFw37Mk7Jg1Gt2dpX1eHXssq2of2QuWImGpKJA8LMbeYySqZFaUkQYQ/34R4V7Fed3rviE1mnm0HioImQtzTrIyJysB9BZH6+Ec15xZvfd1rKRgBjdVMTwYv/2sVJKU3lpFYC281pH1Y7X/yPZsp4GfGMS6VFfdV1W5x24Ot/Gxu0cEgDGGuwN4r1sHACZJUOYSZ84y9EdrHz8ohQc23BFVbAy6jcw1B4J0P1q01ltrUG1cUqpKGOnurfWI5h4wn/d8vcZ1XQma2eN8dO+s9jwex3maWY1533euvO/r/r4i4vHXcUTz6H+PnzUHJRepvVkqmQXSaSQpcqlMQ1cJWSszVUtIYCndzY3OZBXm2l7NFM0JMzfILPp59h6k7bxQlgyO76UpdNBt7xg2WlbC5G4iUMolCO2NaouQqwIk6FAAkqYE2Bv5A+SbwyZIsbmXOEuZub16w83Do6jaq7NqzcKax3FUZs5ZZuytWTCU9W73JBWkrCx5mIBSVVZWVWZ1WahpHZXPrP8M/y+c/faxRt7zNdd35avyppqfsSPmDfF2f+m+R5iv69pdMEl6zBINLM5ar3XLqj3OfoCoXFUz6dVotVig9p1je7PtbN5gglWtlDYmEOnu5rF9CppgkJm1Foc9ndHC219//fXX8WyLz+M8zpPkfV2X3/O+bXKu+/r6ritfx5e1+Dm+bq7u4WbhHuZgz0yDEHTab+evfM2XCGFVzVx35VKtauEeZm7wXTyLRHRgu7t7hJv50XuYlZBZWOCCFVt5lqyMSbqpWIQIN3PfttjGFJBOOcAqoVjVAEBcySoDmm3hzM1JChRRpEgQYCVR5ojmJrTw1loBsLJgMGDlgEFHa7OqxlpCA7ZB0d+f/7rue64Z7oHYKQcF1du0IVUirpya64+Co87ij4E/X4UxxveX13RLQ8qFZt0R0do2adPCJgZE9N5zrTnn7gvMSDBn0soiv+e4xssPBcNaGHPMea+7u9Echh3gEX6cfQHf13c7mlBrzVrruq9VC0b3CIuIZuaCqQCi9ePHnxbRvEWleu+0bsaUjTur6h5z3HPeCXjrjznq18/v/x5/L5X92fFwguZOs72drGbBbKsNYi3UKi2J2IbPJWzzw5QUrnC5qUqpKrhq36D6/YzkmzRfc62x5hx5r6xymBtMZkmlilWCBWm0MG5CyqqQbg+rqSqiAO2P1rqyCOG9Qj+agqkpAwsubA2n1lKpm/fzMLMWEd6+chXlzu2jEICJjSyShAlcVTmXaswxcpbKGRYBglkbXbrMmlwCmesu5Uk/DZ5rfH//+rVs1nVfy6s94zysmvPHGagwNyTWzmzQNiIxs8wsqVSqDe1kAJRGn3O9xn00X8WVcK9rvl7XyNDyOmDFEtBaO3hojfu+Vj5TqZVzrjmvrARAC/Nwb/tiZ1UpPcw8jsfpFp9f3z9/fb308gWCKM21xn2vMddaPdrjPPvz48q8X9e17hPh7ssRVhN7uEGJIuHuFkxwpRaSDpo5YXLBK71UY5N+2NUDUs3CTFAgmdFo7h5VqlLOXGPOe645M8thZvYeiUqVUiX3ZmB704JLGAvlGHsDHyBZiazSWNvuKdzNGq15EVjYbDsgg0xacwII93YcEbF32//6+lbJI5p7izgsHHz9+nSwtTiiGzjGuOa9CQ2aeY9+Hnyv0k7ae4nbThZxQfP+w/pjZeX189fn66qPdqRyypo9/uztebbzj4/X91eMXPeaY00BzdiOfj4eJGUUUcBaM1cacLRO8l5jzAHgvi/rJqOZrPH58dDynPOapcyV+XVfCcmNqtq+NXPOMaoqeo+Gj/jY0ATgWHNbpbx+fZrb1+sL8rHmmqmled0///Xz+/tbVW8yLdfz8fyvf/zj4+NHw7Ob6nZ7tP7jfBynk/O65rqr1MILq+7CFD2suzeHkkyBlZUbPJLHcbYWW/GVVDMBC49dj91MyDEuVRDUdu6cY5tg0HumRB6P83GeDEst1PIsTLlnq3kY6rSje8my1qg11srKlBaqSCPhzZvhcKRywQCnmTEiorVlXm+jD1Nq1kyMWjNaPHr01h3UnGOuNUdz7/7o7pJaIKHXPc7WaRYeKBnh3iw6fkfPDqAfxp7nuTheX19zfeZq1LCiUECrfPhHtK4rWfYbge+vMKPZJul+B//7za4A5mCWmNi0X6FESEbSrRIJqXJX1MWCbaXL9lGycnP1mxAWpVJWzZz3Ne4xvl/3f//zn956uIOUuOnHz8+vr6+ve9xm1iwy83Gex2E30zXTqw5DNHRDp3WjgACKJlgzSFVICZYOgOkUCchAceuYMpoD/6/xMePWtWzLwoCwpQkmEyxzcXfnJuk9+EOj0wicvZ+hM3B4BuFiAWooYyHupdfNX69SLXdQUZSIhY3/t9IF26cLNOGMllVZtUV7kQJOt+Z+uHUjxAWgdPRGUdKYa1vJljIs4HBz87fplZHG/3Wf3U3uk+1DJtSCTfdXi8t1Bwk28w93graUYyhnbF58w/2dLjdWl7TXtm/TWbDMYEw3OZHEG9dpCwyADHCQtYXsLYI18+beYuSoqm3jZcYtcKy5smqudV3359f36/V6ve6///Wztd6O3bJZQmVof/Q/n27uvfdwm2NCOI6urpv3wlJXs7AD4QwHUS1ocBK9t5StxCwmUqhMRTMYiY2so0qiahv1ZPmWEqxIOnw79YIkBIEsAHQxYPDmsKTTt7sqYicNMfHHcTyb/gj9aDoYoVGs22HdFXFN++fnsrxYCXBWLeVaY9syGDYcFSnjZgGy916w7+/XGJcA76211npr7q01o6k2psF+6HHPGGWWIIBH7+bcfdK+5gKUuacA3gvZJZ/yiVVKuh6PRa6s7yoHH60dz3O1prXGfX3PO3as7Ojbffu/O70ttv++GyUs0oxwl5MW4ZQ2Ly5jMotME94+yuZm7tHCe9tfVZXYE85GsTKXVs45r+t6Xd9fX5/3zONsrfXzcbR+mDvIketel3t7PB7P55PEvMacs5lHoDTEZWHHcZhVRzXKAPM3yGpHlGwtzFoja2YWFj2MTgNou79ZrJq5Y6R2lJBuDN+nR8T+AVgCNtMX4SW6GkpISLSD1mAASw11qp7AH1Ufng1ZyGnmzdj9du/L7TZbwEoWa3GWFvdiCW+NRjgt8DalDlpB2zyvDI4I92frzcxoe8WJzJZ5mFeApHuTRBige77C6R5GJoRVI9eaI6LRw8hCYeU1FkctKQH/+DgeHwH8+vpcWXH0+Tjv5rrXlXWtepcwktsBWVWZe6xpU0sFyYxS5nwZRbTmRm9xEjZVSdJgKkMSRXeHvUe/zLHtuUtZqNrqVxYhlqg0ipA53OHdOtF6b/14HI84Dgs3cta4FsL8eZ6P52HkaDaHEaBZzsySBc5GlHpmzGGAZxrZnN0I2GIbhRs1qgZhBhrMzcyLJOVUcglvwdvdzOiiQ+C/f7HHuARh1/u2kzB3S6+Ehdm2V2VhXMjyVe6rYfa6ZbOfThxR5wErrAr33jjXl9yAWrWUqZmP2mjMQIL2VpCXSqoUNjXrrUUjW+mtegigWUNWupv3bhabD6g1599X0MOdIDJXZs2VYxnom6ev1Fz3XGtmAeUR5/mMvqBhsdassHF2cyut64xliFUpCMRGzQlJNdbaWWdXfoKoHHOYmQXdLTzaGVk1plgmkjDKUYgWRqxKoESWBBXNTCiyVr7pB1Qn4LTupx2govscq4B+9Oitt9iP9Af7A1ZVEQwUwTDRaTR3S2pKJILCmk4YYCKU3fwIRYlUmXV6K7vLXbkgGXzDlV3MTGZelao0yIOtmZUw8w2W9mwcCEkoc9JIdxjNiLFy602NdBrkBHJxTfoihuqlNYihs/RqdTwsjidMbv08Gs6f05rBwWtxlpfw+8l0I8gsFcZ1l6SUm1uER7i7xlKquOFScxqNK5e7t/NkxFp13/ccgyVKtnvMqpyr1mruh7feu9Es1yqgs8ixEhGtHfQ2cz0+/shapTXcECzzYd3XGfUmmjfbvK+3SvV//kZspnLe1RoVQVrE0fs9hna5BjapASAszIFEiRsg1e8VQVwUVFWUJuqIxu0rGLGFkXmsNZcfvfd9a9nm4prHfV+gqIRgKFDu6G4pY1CS16q1CJJzq1veEBVRSRL+Djl6ZVnuuRvC9mfYqQWVq5KGikBEYyZmihtsv/8l32VddLMwM6PZVEEk99j2fsxZJjmKmabFNTkv6V5z8Hadk/2M9ni0047DWovLREFwYpTdnqtSvo/JDSLmmFlZKnOLFu5uRM2sShH0EBatubkh91AezFaOr+/v8f197KZoI7yVm84+3q9uNE+/BbZQd1xLdJGZdd/zeDzC+jWu9BwuRRSPqPgfgm2WramjMZIAAAAASUVORK5CYII=",
45
+ "text/plain": [
46
+ "PILImage mode=RGB size=192x191"
47
+ ]
48
+ },
49
+ "execution_count": 3,
50
+ "metadata": {},
51
+ "output_type": "execute_result"
52
+ }
53
+ ],
54
+ "source": [
55
+ "im = PILImage.create('dog.jpeg')\n",
56
+ "im.thumbnail((192, 192))\n",
57
+ "im"
58
+ ]
59
+ },
60
+ {
61
+ "cell_type": "code",
62
+ "execution_count": 4,
63
+ "id": "a420c99a",
64
+ "metadata": {},
65
+ "outputs": [],
66
+ "source": [
67
+ "#|export\n",
68
+ "learn = load_learner('model.pkl')"
69
+ ]
70
+ },
71
+ {
72
+ "cell_type": "code",
73
+ "execution_count": 5,
74
+ "id": "034717d6",
75
+ "metadata": {},
76
+ "outputs": [
77
+ {
78
+ "data": {
79
+ "text/html": [
80
+ "\n",
81
+ "<style>\n",
82
+ " /* Turns off some styling */\n",
83
+ " progress {\n",
84
+ " /* gets rid of default border in Firefox and Opera. */\n",
85
+ " border: none;\n",
86
+ " /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
87
+ " background-size: auto;\n",
88
+ " }\n",
89
+ " progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
90
+ " background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
91
+ " }\n",
92
+ " .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
93
+ " background: #F44336;\n",
94
+ " }\n",
95
+ "</style>\n"
96
+ ],
97
+ "text/plain": [
98
+ "<IPython.core.display.HTML object>"
99
+ ]
100
+ },
101
+ "metadata": {},
102
+ "output_type": "display_data"
103
+ },
104
+ {
105
+ "data": {
106
+ "text/html": [],
107
+ "text/plain": [
108
+ "<IPython.core.display.HTML object>"
109
+ ]
110
+ },
111
+ "metadata": {},
112
+ "output_type": "display_data"
113
+ },
114
+ {
115
+ "data": {
116
+ "text/plain": [
117
+ "('False', tensor(0), tensor([9.9960e-01, 4.0038e-04]))"
118
+ ]
119
+ },
120
+ "execution_count": 5,
121
+ "metadata": {},
122
+ "output_type": "execute_result"
123
+ }
124
+ ],
125
+ "source": [
126
+ "learn.predict(im)"
127
+ ]
128
+ },
129
+ {
130
+ "cell_type": "code",
131
+ "execution_count": 6,
132
+ "id": "a95b779b",
133
+ "metadata": {},
134
+ "outputs": [],
135
+ "source": [
136
+ "#|export\n",
137
+ "categories = ('Dog', 'Cat')\n",
138
+ "\n",
139
+ "def classify_image(img):\n",
140
+ " pred,idx,probs = learn.predict(img)\n",
141
+ " return dict(zip(categories, map(float, probs)))"
142
+ ]
143
+ },
144
+ {
145
+ "cell_type": "code",
146
+ "execution_count": 7,
147
+ "id": "ca6899b3",
148
+ "metadata": {},
149
+ "outputs": [
150
+ {
151
+ "data": {
152
+ "text/html": [
153
+ "\n",
154
+ "<style>\n",
155
+ " /* Turns off some styling */\n",
156
+ " progress {\n",
157
+ " /* gets rid of default border in Firefox and Opera. */\n",
158
+ " border: none;\n",
159
+ " /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
160
+ " background-size: auto;\n",
161
+ " }\n",
162
+ " progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
163
+ " background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
164
+ " }\n",
165
+ " .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
166
+ " background: #F44336;\n",
167
+ " }\n",
168
+ "</style>\n"
169
+ ],
170
+ "text/plain": [
171
+ "<IPython.core.display.HTML object>"
172
+ ]
173
+ },
174
+ "metadata": {},
175
+ "output_type": "display_data"
176
+ },
177
+ {
178
+ "data": {
179
+ "text/html": [],
180
+ "text/plain": [
181
+ "<IPython.core.display.HTML object>"
182
+ ]
183
+ },
184
+ "metadata": {},
185
+ "output_type": "display_data"
186
+ },
187
+ {
188
+ "data": {
189
+ "text/plain": [
190
+ "{'Dog': 0.9995996356010437, 'Cat': 0.00040037668077275157}"
191
+ ]
192
+ },
193
+ "execution_count": 7,
194
+ "metadata": {},
195
+ "output_type": "execute_result"
196
+ }
197
+ ],
198
+ "source": [
199
+ "classify_image(im)"
200
+ ]
201
+ },
202
+ {
203
+ "cell_type": "code",
204
+ "execution_count": 9,
205
+ "id": "0990842c",
206
+ "metadata": {},
207
+ "outputs": [
208
+ {
209
+ "name": "stderr",
210
+ "output_type": "stream",
211
+ "text": [
212
+ "/home/suchitg/.local/lib/python3.11/site-packages/gradio/inputs.py:259: UserWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n",
213
+ " warnings.warn(\n",
214
+ "/home/suchitg/.local/lib/python3.11/site-packages/gradio/inputs.py:262: UserWarning: `optional` parameter is deprecated, and it has no effect\n",
215
+ " super().__init__(\n",
216
+ "/home/suchitg/.local/lib/python3.11/site-packages/gradio/outputs.py:197: UserWarning: Usage of gradio.outputs is deprecated, and will not be supported in the future, please import your components from gradio.components\n",
217
+ " warnings.warn(\n",
218
+ "/home/suchitg/.local/lib/python3.11/site-packages/gradio/outputs.py:200: UserWarning: The 'type' parameter has been deprecated. Use the Number component instead.\n",
219
+ " super().__init__(num_top_classes=num_top_classes, type=type, label=label)\n"
220
+ ]
221
+ },
222
+ {
223
+ "name": "stdout",
224
+ "output_type": "stream",
225
+ "text": [
226
+ "Running on local URL: http://127.0.0.1:7861\n",
227
+ "\n",
228
+ "To create a public link, set `share=True` in `launch()`.\n"
229
+ ]
230
+ },
231
+ {
232
+ "data": {
233
+ "text/plain": []
234
+ },
235
+ "execution_count": 9,
236
+ "metadata": {},
237
+ "output_type": "execute_result"
238
+ },
239
+ {
240
+ "data": {
241
+ "text/html": [
242
+ "\n",
243
+ "<style>\n",
244
+ " /* Turns off some styling */\n",
245
+ " progress {\n",
246
+ " /* gets rid of default border in Firefox and Opera. */\n",
247
+ " border: none;\n",
248
+ " /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
249
+ " background-size: auto;\n",
250
+ " }\n",
251
+ " progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
252
+ " background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
253
+ " }\n",
254
+ " .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
255
+ " background: #F44336;\n",
256
+ " }\n",
257
+ "</style>\n"
258
+ ],
259
+ "text/plain": [
260
+ "<IPython.core.display.HTML object>"
261
+ ]
262
+ },
263
+ "metadata": {},
264
+ "output_type": "display_data"
265
+ },
266
+ {
267
+ "data": {
268
+ "text/html": [],
269
+ "text/plain": [
270
+ "<IPython.core.display.HTML object>"
271
+ ]
272
+ },
273
+ "metadata": {},
274
+ "output_type": "display_data"
275
+ },
276
+ {
277
+ "data": {
278
+ "text/html": [
279
+ "\n",
280
+ "<style>\n",
281
+ " /* Turns off some styling */\n",
282
+ " progress {\n",
283
+ " /* gets rid of default border in Firefox and Opera. */\n",
284
+ " border: none;\n",
285
+ " /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
286
+ " background-size: auto;\n",
287
+ " }\n",
288
+ " progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
289
+ " background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
290
+ " }\n",
291
+ " .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
292
+ " background: #F44336;\n",
293
+ " }\n",
294
+ "</style>\n"
295
+ ],
296
+ "text/plain": [
297
+ "<IPython.core.display.HTML object>"
298
+ ]
299
+ },
300
+ "metadata": {},
301
+ "output_type": "display_data"
302
+ },
303
+ {
304
+ "data": {
305
+ "text/html": [],
306
+ "text/plain": [
307
+ "<IPython.core.display.HTML object>"
308
+ ]
309
+ },
310
+ "metadata": {},
311
+ "output_type": "display_data"
312
+ },
313
+ {
314
+ "data": {
315
+ "text/html": [
316
+ "\n",
317
+ "<style>\n",
318
+ " /* Turns off some styling */\n",
319
+ " progress {\n",
320
+ " /* gets rid of default border in Firefox and Opera. */\n",
321
+ " border: none;\n",
322
+ " /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
323
+ " background-size: auto;\n",
324
+ " }\n",
325
+ " progress:not([value]), progress:not([value])::-webkit-progress-bar {\n",
326
+ " background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n",
327
+ " }\n",
328
+ " .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
329
+ " background: #F44336;\n",
330
+ " }\n",
331
+ "</style>\n"
332
+ ],
333
+ "text/plain": [
334
+ "<IPython.core.display.HTML object>"
335
+ ]
336
+ },
337
+ "metadata": {},
338
+ "output_type": "display_data"
339
+ },
340
+ {
341
+ "data": {
342
+ "text/html": [],
343
+ "text/plain": [
344
+ "<IPython.core.display.HTML object>"
345
+ ]
346
+ },
347
+ "metadata": {},
348
+ "output_type": "display_data"
349
+ }
350
+ ],
351
+ "source": [
352
+ "#|export\n",
353
+ "image = gr.inputs.Image(shape=(192, 192))\n",
354
+ "label = gr.outputs.Label()\n",
355
+ "examples = ['dog.jpeg', 'cat.jpeg', 'ooconfuse.jpeg']\n",
356
+ "\n",
357
+ "intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
358
+ "intf.launch(inline=False)"
359
+ ]
360
+ },
361
+ {
362
+ "cell_type": "code",
363
+ "execution_count": 16,
364
+ "id": "4b9e1641",
365
+ "metadata": {},
366
+ "outputs": [
367
+ {
368
+ "name": "stdout",
369
+ "output_type": "stream",
370
+ "text": [
371
+ "Export successful\n"
372
+ ]
373
+ }
374
+ ],
375
+ "source": [
376
+ "import nbdev\n",
377
+ "nbdev.export.nb_export('app.ipynb', 'app')\n",
378
+ "print('Export successful')"
379
+ ]
380
+ },
381
+ {
382
+ "cell_type": "code",
383
+ "execution_count": null,
384
+ "id": "0b8ce10c",
385
+ "metadata": {},
386
+ "outputs": [],
387
+ "source": []
388
+ }
389
+ ],
390
+ "metadata": {
391
+ "kernelspec": {
392
+ "display_name": "Python 3 (ipykernel)",
393
+ "language": "python",
394
+ "name": "python3"
395
+ },
396
+ "language_info": {
397
+ "codemirror_mode": {
398
+ "name": "ipython",
399
+ "version": 3
400
+ },
401
+ "file_extension": ".py",
402
+ "mimetype": "text/x-python",
403
+ "name": "python",
404
+ "nbconvert_exporter": "python",
405
+ "pygments_lexer": "ipython3",
406
+ "version": "3.11.3"
407
+ }
408
+ },
409
+ "nbformat": 4,
410
+ "nbformat_minor": 5
411
+ }
app.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AUTOGENERATED! DO NOT EDIT! File to edit: ../app.ipynb.
2
+
3
+ # %% auto 0
4
+ __all__ = ['learn', 'categories', 'image', 'label', 'examples', 'intf', 'is_cat', 'classify_image']
5
+
6
+ # %% ../app.ipynb 2
7
+ from fastai.vision.all import *
8
+ import gradio as gr
9
+
10
+ def is_cat(x):
11
+ return x[0].isupper()
12
+
13
+ # %% ../app.ipynb 4
14
+ learn = load_learner('model.pkl')
15
+
16
+ # %% ../app.ipynb 6
17
+ categories = ('Dog', 'Cat')
18
+
19
+ def classify_image(img):
20
+ pred,idx,probs = learn.predict(img)
21
+ return dict(zip(categories, map(float, probs)))
22
+
23
+ # %% ../app.ipynb 8
24
+ image = gr.inputs.Image(shape=(192, 192))
25
+ label = gr.outputs.Label()
26
+ examples = ['dog.jpeg', 'cat.jpeg', 'ooconfuse.jpeg']
27
+
28
+ intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
29
+ intf.launch(inline=False)
cat.jpeg ADDED
dog.jpeg ADDED
model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89aa07fa306b1c0fa12b9a3f2a1ada3a166385dc14b21a3ff67a3c8a591c6823
3
+ size 47061483
ooconfuse.jpeg ADDED