Spaces:
Running
Running
Add code
Browse files- README.md +5 -5
- requirements.txt +6 -0
- utils/ __init__.py +0 -0
- utils/notebook_utils.py +184 -0
README.md
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
---
|
| 2 |
-
title: Auto
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 4.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Auto notebook creator
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.39.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio_huggingfacehub_search==0.0.7
|
| 2 |
+
huggingface_hub
|
| 3 |
+
nbformat
|
| 4 |
+
httpx
|
| 5 |
+
outlines
|
| 6 |
+
python-dotenv
|
utils/ __init__.py
ADDED
|
File without changes
|
utils/notebook_utils.py
ADDED
|
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def replace_wildcards(templates, wildcards, replacements):
|
| 2 |
+
if len(wildcards) != len(replacements):
|
| 3 |
+
raise ValueError(
|
| 4 |
+
"The number of wildcards must match the number of replacements."
|
| 5 |
+
)
|
| 6 |
+
|
| 7 |
+
new_templates = []
|
| 8 |
+
for tmp in templates:
|
| 9 |
+
tmp_text = tmp["source"]
|
| 10 |
+
for wildcard, replacement in zip(wildcards, replacements):
|
| 11 |
+
tmp_text = tmp_text.replace(wildcard, replacement)
|
| 12 |
+
new_templates.append({"cell_type": tmp["cell_type"], "source": tmp_text})
|
| 13 |
+
|
| 14 |
+
return new_templates
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
rag_cells = [
|
| 18 |
+
{
|
| 19 |
+
"cell_type": "markdown",
|
| 20 |
+
"source": "# Retrieval-Augmented Generation (RAG) System Notebook",
|
| 21 |
+
},
|
| 22 |
+
{"cell_type": "code", "source": ""},
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
embeggins_cells = [
|
| 26 |
+
{
|
| 27 |
+
"cell_type": "markdown",
|
| 28 |
+
"source": "# Embeddings Generation Notebook",
|
| 29 |
+
},
|
| 30 |
+
{"cell_type": "code", "source": ""},
|
| 31 |
+
]
|
| 32 |
+
|
| 33 |
+
eda_cells = [
|
| 34 |
+
{
|
| 35 |
+
"cell_type": "markdown",
|
| 36 |
+
"source": "# Exploratory Data Analysis (EDA) Notebook for {dataset_name} dataset",
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"cell_type": "code",
|
| 40 |
+
"source": """
|
| 41 |
+
from IPython.display import HTML
|
| 42 |
+
display(HTML("{html_code}"))
|
| 43 |
+
""",
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"cell_type": "code",
|
| 47 |
+
"source": """
|
| 48 |
+
# 1. Install and import necessary libraries.
|
| 49 |
+
!pip install pandas matplotlib seaborn
|
| 50 |
+
""",
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"cell_type": "code",
|
| 54 |
+
"source": """
|
| 55 |
+
import pandas as pd
|
| 56 |
+
import matplotlib.pyplot as plt
|
| 57 |
+
import seaborn as sns
|
| 58 |
+
""",
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"cell_type": "code",
|
| 62 |
+
"source": """
|
| 63 |
+
# 2. Load the dataset as a DataFrame using the provided code
|
| 64 |
+
{first_code}
|
| 65 |
+
""",
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"cell_type": "code",
|
| 69 |
+
"source": """
|
| 70 |
+
# 3. Understand the dataset structure
|
| 71 |
+
print(df.head())
|
| 72 |
+
print(df.info())
|
| 73 |
+
print(df.describe())
|
| 74 |
+
""",
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"cell_type": "code",
|
| 78 |
+
"source": """
|
| 79 |
+
# 4. Check for missing values
|
| 80 |
+
print(df.isnull().sum())
|
| 81 |
+
""",
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"cell_type": "code",
|
| 85 |
+
"source": """
|
| 86 |
+
# 5. Identify data types of each column
|
| 87 |
+
print(df.dtypes)
|
| 88 |
+
""",
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"cell_type": "code",
|
| 92 |
+
"source": """
|
| 93 |
+
# 6. Detect duplicated rows
|
| 94 |
+
print(df.duplicated().sum())
|
| 95 |
+
""",
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"cell_type": "code",
|
| 99 |
+
"source": """
|
| 100 |
+
# 7. Generate descriptive statistics
|
| 101 |
+
print(df.describe())
|
| 102 |
+
""",
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"cell_type": "code",
|
| 106 |
+
"source": """
|
| 107 |
+
# 8. Visualize the distribution of each column.
|
| 108 |
+
# TODO: Add code to visualize the distribution of each column.
|
| 109 |
+
# 9. Explore relationships between columns.
|
| 110 |
+
# TODO: Add code to explore relationships between columns.
|
| 111 |
+
# 10. Perform correlation analysis.
|
| 112 |
+
# TODO: Add code to perform correlation analysis.
|
| 113 |
+
""",
|
| 114 |
+
},
|
| 115 |
+
]
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def generate_embedding_system_prompt():
|
| 119 |
+
"""You are an expert data scientist tasked with creating a Jupyter notebook to generate embeddings for a specific dataset.
|
| 120 |
+
Use only the following libraries: 'pandas' for data manipulation, 'sentence-transformers' to load the embedding model, and 'faiss-cpu' to create the index.
|
| 121 |
+
|
| 122 |
+
The notebook should include:
|
| 123 |
+
|
| 124 |
+
1. Install necessary libraries with !pip install.
|
| 125 |
+
2. Import libraries.
|
| 126 |
+
3. Load the dataset as a DataFrame using the provided code.
|
| 127 |
+
4. Select the column to generate embeddings.
|
| 128 |
+
5. Remove duplicate data.
|
| 129 |
+
6. Convert the selected column to a list.
|
| 130 |
+
7. Load the sentence-transformers model.
|
| 131 |
+
8. Create a FAISS index.
|
| 132 |
+
9. Encode a query sample.
|
| 133 |
+
10. Search for similar documents using the FAISS index.
|
| 134 |
+
|
| 135 |
+
Ensure the notebook is well-organized with explanations for each step.
|
| 136 |
+
The output should be Markdown content with Python code snippets enclosed in "```python" and "```".
|
| 137 |
+
|
| 138 |
+
The user will provide dataset information in the following format:
|
| 139 |
+
|
| 140 |
+
## Columns and Data Types
|
| 141 |
+
|
| 142 |
+
## Sample Data
|
| 143 |
+
|
| 144 |
+
## Loading Data code
|
| 145 |
+
|
| 146 |
+
Use the provided code to load the dataset; do not use any other method.
|
| 147 |
+
"""
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def generate_rag_system_prompt():
|
| 151 |
+
"""You are an expert machine learning engineer tasked with creating a Jupyter notebook to demonstrate a Retrieval-Augmented Generation (RAG) system using a specific dataset.
|
| 152 |
+
The dataset is provided as a pandas DataFrame.
|
| 153 |
+
|
| 154 |
+
Use only the following libraries: 'pandas' for data manipulation, 'sentence-transformers' to load the embedding model, 'faiss-cpu' to create the index, and 'transformers' for inference.
|
| 155 |
+
|
| 156 |
+
The RAG notebook should include:
|
| 157 |
+
|
| 158 |
+
1. Install necessary libraries.
|
| 159 |
+
2. Import libraries.
|
| 160 |
+
3. Load the dataset as a DataFrame using the provided code.
|
| 161 |
+
4. Select the column for generating embeddings.
|
| 162 |
+
5. Remove duplicate data.
|
| 163 |
+
6. Convert the selected column to a list.
|
| 164 |
+
7. Load the sentence-transformers model.
|
| 165 |
+
8. Create a FAISS index.
|
| 166 |
+
9. Encode a query sample.
|
| 167 |
+
10. Search for similar documents using the FAISS index.
|
| 168 |
+
11. Load the 'HuggingFaceH4/zephyr-7b-beta' model from the transformers library and create a pipeline.
|
| 169 |
+
12. Create a prompt with two parts: 'system' for instructions based on a 'context' from the retrieved documents, and 'user' for the query.
|
| 170 |
+
13. Send the prompt to the pipeline and display the answer.
|
| 171 |
+
|
| 172 |
+
Ensure the notebook is well-organized with explanations for each step.
|
| 173 |
+
The output should be Markdown content with Python code snippets enclosed in "```python" and "```".
|
| 174 |
+
|
| 175 |
+
The user will provide the dataset information in the following format:
|
| 176 |
+
|
| 177 |
+
## Columns and Data Types
|
| 178 |
+
|
| 179 |
+
## Sample Data
|
| 180 |
+
|
| 181 |
+
## Loading Data code
|
| 182 |
+
|
| 183 |
+
Use the provided code to load the dataset; do not use any other method.
|
| 184 |
+
"""
|