Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
import torch | |
# Cargar modelo y tokenizer | |
model_name = "google/flan-t5-base" | |
tokenizer = T5Tokenizer.from_pretrained(model_name) | |
model = T5ForConditionalGeneration.from_pretrained(model_name) | |
def get_system_prompt(): | |
with open("prompt.txt", "r", encoding="utf-8") as f: | |
return f.read().strip() | |
def generate_response(user_input): | |
system_prompt = get_system_prompt() | |
full_prompt = f"{system_prompt}\n\nUsuario: {user_input}\nBITER:" | |
inputs = tokenizer(full_prompt, return_tensors="pt") | |
output = model.generate(**inputs, max_new_tokens=200) | |
decoded_output = tokenizer.decode(output[0], skip_special_tokens=True) | |
return decoded_output.strip() | |
# Interfaz Gradio para probar el modelo directamente en Hugging Face | |
demo = gr.Interface( | |
fn=generate_response, | |
inputs=gr.Textbox(lines=2, placeholder="Escribe tu pregunta..."), | |
outputs=gr.Textbox(), | |
title="BITER - Mentor IA para Emprendedores", | |
description="Respuestas rápidas, estratégicas y en español. Como un CEO que te asesora al instante.", | |
) | |
if __name__ == "__main__": | |
demo.launch() | |