asigalov61's picture
Update app.py
06f7611 verified
raw
history blame
16.1 kB
# =================================================================================================
# https://huggingface.co/spaces/asigalov61/Monophonic-MIDI-Melody-Harmonizer
# =================================================================================================
import os
import time as reqtime
import datetime
from pytz import timezone
import gradio as gr
import os
import random
from tqdm import tqdm
import TMIDIX
import HaystackSearch
from midi_to_colab_audio import midi_to_colab_audio
# =================================================================================================
def Generate_Chords_Progression(minimum_song_length_in_chords_chunks,
chords_chunks_memory_ratio,
chord_time_step,
merge_chords_notes,
melody_MIDI_patch_number,
chords_progression_MIDI_patch_number,
base_MIDI_patch_number
):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
print('Requested settings:')
print('Minimum song length in chords chunks:', minimum_song_length_in_chords_chunks)
print('Chords chunks memory ratio:', chords_chunks_memory_ratio)
print('Chord time step:', chord_time_step)
print('Merge chords notes max time:', merge_chords_notes)
print('Melody MIDI patch number:', melody_MIDI_patch_number)
print('Chords progression MIDI patch number:', chords_progression_MIDI_patch_number)
print('Base MIDI patch number:', base_MIDI_patch_number)
print('=' * 70)
#==================================================================
print('=' * 70)
print('Pitches Chords Progressions Generator')
print('=' * 70)
print('=' * 70)
print('Chunk-by-chunk generation')
print('=' * 70)
print('Generating...')
print('=' * 70)
matching_long_chords_chunks = []
ridx = random.randint(0, len(all_long_chords_tokens_chunks)-1)
matching_long_chords_chunks.append(ridx)
max_song_len = 0
tries = 0
while len(matching_long_chords_chunks) < minimum_song_length_in_chords_chunks:
matching_long_chords_chunks = []
ridx = random.randint(0, len(all_long_chords_tokens_chunks)-1)
matching_long_chords_chunks.append(ridx)
seen = [ridx]
gseen = [ridx]
for a in range(minimum_song_length_in_chords_chunks * 10):
if not matching_long_chords_chunks:
break
if len(matching_long_chords_chunks) > minimum_song_length_in_chords_chunks:
break
schunk = all_long_chords_tokens_chunks[matching_long_chords_chunks[-1]]
trg_long_chunk = np.array(schunk[-chunk_size:])
idxs = np.where((src_long_chunks == trg_long_chunk).all(axis=1))[0].tolist()
if len(idxs) > 1:
random.shuffle(idxs)
eidxs = [i for i in idxs if i not in seen]
if eidxs:
eidx = eidxs[0]
matching_long_chords_chunks.append(eidx)
seen.append(eidx)
gseen.append(eidx)
if 0 < chords_chunks_memory_ratio < 1:
seen = random.choices(gseen, k=math.ceil(len(gseen) * chords_chunks_memory_ratio))
elif chords_chunks_memory_ratio == 0:
seen = []
else:
gseen.pop()
matching_long_chords_chunks.pop()
else:
gseen.pop()
matching_long_chords_chunks.pop()
if len(matching_long_chords_chunks) > max_song_len:
print('Current song length:', len(matching_long_chords_chunks), 'chords chunks')
print('=' * 70)
final_song = matching_long_chords_chunks
max_song_len = max(max_song_len, len(matching_long_chords_chunks))
tries += 1
if tries % 500 == 0:
print('Number of passed tries:', tries)
print('=' * 70)
if len(matching_long_chords_chunks) > max_song_len:
print('Current song length:', len(matching_long_chords_chunks), 'chords chunks')
print('=' * 70)
final_song = matching_long_chords_chunks
f_song = []
for mat in final_song:
f_song.extend(all_long_good_chords_chunks[mat][:-chunk_size])
f_song.extend(all_long_good_chords_chunks[mat][-chunk_size:])
print('Generated final song after', tries, 'tries with', len(final_song), 'chords chunks and', len(f_song), 'chords')
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
output_score = []
time = 0
patches = [0] * 16
patches[0] = chords_progression_MIDI_patch_number
if base_MIDI_patch_number > -1:
patches[2] = base_MIDI_patch_number
if melody_MIDI_patch_number > -1:
patches[3] = melody_MIDI_patch_number
chords_labels = []
for i, s in enumerate(f_song):
time += chord_time_step
dur = chord_time_step
chord_str = str(i+1)
for t in sorted(set([t % 12 for t in s])):
chord_str += '-' + str(t)
chords_labels.append(['text_event', time, chord_str])
for p in s:
output_score.append(['note', time, dur, 0, p, max(40, p), chords_progression_MIDI_patch_number])
if base_MIDI_patch_number > -1:
output_score.append(['note', time, dur, 2, (s[-1] % 12)+24, 120-(s[-1] % 12), base_MIDI_patch_number])
if melody_MIDI_patch_number > -1:
output_score = TMIDIX.add_melody_to_enhanced_score_notes(output_score,
melody_patch=melody_MIDI_patch_number,
melody_notes_max_duration=max(merge_chords_notes, chord_time_step)
)
if merge_chords_notes > 0:
escore_matrix = TMIDIX.escore_notes_to_escore_matrix(output_score)
output_score = TMIDIX.escore_matrix_to_merged_escore_notes(escore_matrix, max_note_duration=merge_chords_notes)
midi_score = sorted(chords_labels + output_score, key=lambda x: x[1])
fn1 = "Pitches-Chords-Progression-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(midi_score,
output_signature = 'Pitches Chords Progression',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
#========================================================
output_midi_title = str(fn1)
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi, return_plt=True)
print('Done!')
print('=' * 70)
#========================================================
print('Generated chords progression info and stats:')
print('=' * 70)
chords_progression_summary_string = '=' * 70
chords_progression_summary_string += '\n'
all_song_chords = []
for pc in f_song:
tones_chord = tuple(sorted(set([p % 12 for p in pc])))
all_song_chords.append([pc, tones_chord])
print('=' * 70)
print('Total number of chords:', len(all_song_chords))
chords_progression_summary_string += 'Total number of chords: ' + str(len(all_song_chords)) + '\n'
chords_progression_summary_string += '=' * 70
chords_progression_summary_string += '\n'
print('=' * 70)
print('Most common pitches chord:', list(Counter(tuple([a[0] for a in all_song_chords])).most_common(1)[0][0]), '===', Counter(tuple([a[0] for a in all_song_chords])).most_common(1)[0][1], 'count')
chords_progression_summary_string += 'Most common pitches chord: ' + str(list(Counter(tuple([a[0] for a in all_song_chords])).most_common(1)[0][0])) + ' === ' + str(Counter(tuple([a[0] for a in all_song_chords])).most_common(1)[0][1]) + ' count' + '\n'
chords_progression_summary_string += '=' * 70
chords_progression_summary_string += '\n'
print('=' * 70)
print('Most common tones chord:', list(Counter(tuple([a[1] for a in all_song_chords])).most_common(1)[0][0]), '===', Counter(tuple([a[1] for a in all_song_chords])).most_common(1)[0][1], 'count')
chords_progression_summary_string += 'Most common tones chord: ' + str(list(Counter(tuple([a[1] for a in all_song_chords])).most_common(1)[0][0])) + ' === ' + str(Counter(tuple([a[1] for a in all_song_chords])).most_common(1)[0][1]) + ' count' + '\n'
chords_progression_summary_string += '=' * 70
chords_progression_summary_string += '\n'
print('=' * 70)
print('Sorted unique songs chords set:', len(sorted(set(tuple([a[1] for a in all_song_chords])))), 'count')
chords_progression_summary_string += 'Sorted unique songs chords set: ' + str(len(sorted(set(tuple([a[1] for a in all_song_chords]))))) + ' count' + '\n'
chords_progression_summary_string += '=' * 70
chords_progression_summary_string += '\n'
#print('=' * 70)
for c in sorted(set(tuple([a[1] for a in all_song_chords]))):
#print(list(c))
chords_progression_summary_string += str(list(c)) + '\n'
chords_progression_summary_string += '=' * 70
chords_progression_summary_string += '\n'
print('=' * 70)
print('Grouped songs chords set:', len(TMIDIX.grouped_set(tuple([a[1] for a in all_song_chords]))), 'count')
chords_progression_summary_string += 'Grouped songs chords set: ' + str(len(TMIDIX.grouped_set(tuple([a[1] for a in all_song_chords])))) + ' count' + '\n'
chords_progression_summary_string += '=' * 70
chords_progression_summary_string += '\n'
print('=' * 70)
for c in TMIDIX.grouped_set(tuple([a[1] for a in all_song_chords])):
#print(list(c))
chords_progression_summary_string += str(list(c)) + '\n'
chords_progression_summary_string += '=' * 70
chords_progression_summary_string += '\n'
#print('=' * 70)
#print('All songs chords')
chords_progression_summary_string += 'All songs chords' + '\n'
chords_progression_summary_string += '=' * 70
chords_progression_summary_string += '\n'
#print('=' * 70)
for i, pc_tc in enumerate(all_song_chords):
#print('Song chord #', i)
chords_progression_summary_string += 'Song chord # ' + str(i) + '\n'
#print(list(pc_tc[0]), '===', list(pc_tc[1]))
chords_progression_summary_string += str(list(pc_tc[0])) + ' === ' + str(list(pc_tc[1])) + '\n'
#print('=' * 70)
chords_progression_summary_string += '=' * 70
chords_progression_summary_string += '\n'
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_audio, output_plot, output_midi, chords_progression_summary_string
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
#===============================================================================
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
print('Loading Monster Harmonized Melodies MIDI Dataset...')
print('=' * 70)
all_chords_chunks = TMIDIX.Tegridy_Any_Pickle_File_Reader('Monster_Harmonized_Melodies_MIDI_Dataset')
print('=' * 70)
print('Total number of harmonized melodies:', len(all_chords_chunks))
print('=' * 70)
print('Loading melodies...')
long_mels_chunks_mult = []
long_chords_chunks_mult = []
for c in tqdm(all_chords_chunks):
long_mels_chunks_mult.append([p % 12 for p in c[0]])
long_chords_chunks_mult.append(c[1])
print('Done!')
print('=' * 70)
print('Total loaded melodies count:', len(long_mels_chunks_mult))
print('=' * 70)
#===============================================================================
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Monophonic MIDI Melody Harmonizer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Retrieval augmented harmonization of any MIDI melody</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Monophonic-MIDI-Melody-Harmonizer&style=flat)\n\n"
"This is a demo for Tegridy MIDI Dataset\n\n"
"Check out [Tegridy MIDI Dataset](https://github.com/asigalov61/Tegridy-MIDI-Dataset) on GitHub!\n\n"
)
gr.Markdown("## Select generation options")
minimum_song_length_in_chords_chunks = gr.Slider(4, 60, value=30, step=1, label="Minimum song length in chords chunks")
chords_chunks_memory_ratio = gr.Slider(0, 1, value=1, step=0.1, label="Chords chunks memory ratio")
chord_time_step = gr.Slider(100, 1000, value=500, step=50, label="Chord time step")
merge_chords_notes = gr.Slider(0, 4000, value=1000, step=100, label="Merged chords notes max time")
melody_MIDI_patch_number = gr.Slider(0, 127, value=40, step=1, label="Melody MIDI patch number")
chords_progression_MIDI_patch_number = gr.Slider(0, 127, value=0, step=1, label="Chords progression MIDI patch number")
base_MIDI_patch_number = gr.Slider(0, 127, value=35, step=1, label="Base MIDI patch number")
run_btn = gr.Button("harmonize", variant="primary")
gr.Markdown("## Generation results")
output_audio = gr.Audio(label="Output MIDI audio", format="mp3", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
output_cp_summary = gr.Textbox(label="Generated chords progression info and stats")
run_event = run_btn.click(Generate_Chords_Progression,
[minimum_song_length_in_chords_chunks,
chords_chunks_memory_ratio,
chord_time_step,
merge_chords_notes,
melody_MIDI_patch_number,
chords_progression_MIDI_patch_number,
base_MIDI_patch_number],
[output_audio, output_plot, output_midi, output_cp_summary]
)
app.queue().launch()