Spaces:
Running
Running
asigalov61
commited on
Upload 6 files
Browse files- .gitattributes +1 -0
- SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2 +3 -0
- TMIDIX.py +0 -0
- app.py +417 -0
- midi_to_colab_audio.py +0 -0
- packages.txt +1 -0
- requirements.txt +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2 filter=lfs diff=lfs merge=lfs -text
|
SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd41a4639c9e7a96413b4b22540d48e6741e24bcdabcb2eff22cd65929df3cfa
|
3 |
+
size 553961496
|
TMIDIX.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os.path
|
2 |
+
|
3 |
+
import time as reqtime
|
4 |
+
import datetime
|
5 |
+
from pytz import timezone
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
import spaces
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
from x_transformer_1_23_2 import *
|
13 |
+
import random
|
14 |
+
import tqdm
|
15 |
+
|
16 |
+
from midi_to_colab_audio import midi_to_colab_audio
|
17 |
+
import TMIDIX
|
18 |
+
|
19 |
+
import matplotlib.pyplot as plt
|
20 |
+
|
21 |
+
in_space = os.getenv("SYSTEM") == "spaces"
|
22 |
+
|
23 |
+
# =================================================================================================
|
24 |
+
|
25 |
+
@spaces.GPU
|
26 |
+
def GenerateAccompaniment(input_midi, input_num_tokens, input_conditioning_type, input_strip_notes):
|
27 |
+
print('=' * 70)
|
28 |
+
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
29 |
+
start_time = reqtime.time()
|
30 |
+
|
31 |
+
print('Loading model...')
|
32 |
+
|
33 |
+
SEQ_LEN = 8192 # Models seq len
|
34 |
+
PAD_IDX = 707 # Models pad index
|
35 |
+
DEVICE = 'cuda' # 'cuda'
|
36 |
+
|
37 |
+
# instantiate the model
|
38 |
+
|
39 |
+
model = TransformerWrapper(
|
40 |
+
num_tokens = PAD_IDX+1,
|
41 |
+
max_seq_len = SEQ_LEN,
|
42 |
+
attn_layers = Decoder(dim = 2048, depth = 4, heads = 16, attn_flash = True)
|
43 |
+
)
|
44 |
+
|
45 |
+
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
|
46 |
+
|
47 |
+
model.to(DEVICE)
|
48 |
+
print('=' * 70)
|
49 |
+
|
50 |
+
print('Loading model checkpoint...')
|
51 |
+
|
52 |
+
model.load_state_dict(
|
53 |
+
torch.load('Chords_Progressions_Transformer_Small_2048_Trained_Model_12947_steps_0.9316_loss_0.7386_acc.pth',
|
54 |
+
map_location=DEVICE))
|
55 |
+
print('=' * 70)
|
56 |
+
|
57 |
+
model.eval()
|
58 |
+
|
59 |
+
if DEVICE == 'cpu':
|
60 |
+
dtype = torch.bfloat16
|
61 |
+
else:
|
62 |
+
dtype = torch.float16
|
63 |
+
|
64 |
+
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
|
65 |
+
|
66 |
+
print('Done!')
|
67 |
+
print('=' * 70)
|
68 |
+
|
69 |
+
fn = os.path.basename(input_midi.name)
|
70 |
+
fn1 = fn.split('.')[0]
|
71 |
+
|
72 |
+
input_num_tokens = max(4, min(128, input_num_tokens))
|
73 |
+
|
74 |
+
print('-' * 70)
|
75 |
+
print('Input file name:', fn)
|
76 |
+
print('Req num toks:', input_num_tokens)
|
77 |
+
print('Conditioning type:', input_conditioning_type)
|
78 |
+
print('Strip notes:', input_strip_notes)
|
79 |
+
print('-' * 70)
|
80 |
+
|
81 |
+
#===============================================================================
|
82 |
+
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
|
83 |
+
|
84 |
+
#===============================================================================
|
85 |
+
# Enhanced score notes
|
86 |
+
|
87 |
+
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
|
88 |
+
|
89 |
+
no_drums_escore_notes = [e for e in escore_notes if e[6] < 80]
|
90 |
+
|
91 |
+
if len(no_drums_escore_notes) > 0:
|
92 |
+
|
93 |
+
#=======================================================
|
94 |
+
# PRE-PROCESSING
|
95 |
+
|
96 |
+
#===============================================================================
|
97 |
+
# Augmented enhanced score notes
|
98 |
+
|
99 |
+
no_drums_escore_notes = TMIDIX.augment_enhanced_score_notes(no_drums_escore_notes)
|
100 |
+
|
101 |
+
cscore = TMIDIX.chordify_score([1000, no_drums_escore_notes])
|
102 |
+
|
103 |
+
clean_cscore = []
|
104 |
+
|
105 |
+
for c in cscore:
|
106 |
+
pitches = []
|
107 |
+
cho = []
|
108 |
+
for cc in c:
|
109 |
+
if cc[4] not in pitches:
|
110 |
+
cho.append(cc)
|
111 |
+
pitches.append(cc[4])
|
112 |
+
|
113 |
+
clean_cscore.append(cho)
|
114 |
+
|
115 |
+
#=======================================================
|
116 |
+
# FINAL PROCESSING
|
117 |
+
|
118 |
+
melody_chords = []
|
119 |
+
chords = []
|
120 |
+
times = [0]
|
121 |
+
durs = []
|
122 |
+
|
123 |
+
#=======================================================
|
124 |
+
# MAIN PROCESSING CYCLE
|
125 |
+
#=======================================================
|
126 |
+
|
127 |
+
pe = clean_cscore[0][0]
|
128 |
+
|
129 |
+
first_chord = True
|
130 |
+
|
131 |
+
for c in clean_cscore:
|
132 |
+
|
133 |
+
# Chords
|
134 |
+
|
135 |
+
c.sort(key=lambda x: x[4], reverse=True)
|
136 |
+
|
137 |
+
tones_chord = sorted(set([cc[4] % 12 for cc in c]))
|
138 |
+
|
139 |
+
try:
|
140 |
+
chord_token = TMIDIX.ALL_CHORDS_SORTED.index(tones_chord)
|
141 |
+
except:
|
142 |
+
checked_tones_chord = TMIDIX.check_and_fix_tones_chord(tones_chord)
|
143 |
+
chord_token = TMIDIX.ALL_CHORDS_SORTED.index(checked_tones_chord)
|
144 |
+
|
145 |
+
melody_chords.extend([chord_token+384])
|
146 |
+
|
147 |
+
if input_strip_notes:
|
148 |
+
if len(tones_chord) > 1:
|
149 |
+
chords.extend([chord_token+384])
|
150 |
+
|
151 |
+
else:
|
152 |
+
chords.extend([chord_token+384])
|
153 |
+
|
154 |
+
if first_chord:
|
155 |
+
melody_chords.extend([0])
|
156 |
+
first_chord = False
|
157 |
+
|
158 |
+
for e in c:
|
159 |
+
|
160 |
+
#=======================================================
|
161 |
+
# Timings...
|
162 |
+
|
163 |
+
time = e[1]-pe[1]
|
164 |
+
|
165 |
+
dur = e[2]
|
166 |
+
|
167 |
+
if time != 0 and time % 2 != 0:
|
168 |
+
time += 1
|
169 |
+
if dur % 2 != 0:
|
170 |
+
dur += 1
|
171 |
+
|
172 |
+
delta_time = int(max(0, min(255, time)) / 2)
|
173 |
+
|
174 |
+
# Durations
|
175 |
+
|
176 |
+
dur = int(max(0, min(255, dur)) / 2)
|
177 |
+
|
178 |
+
# Pitches
|
179 |
+
|
180 |
+
ptc = max(1, min(127, e[4]))
|
181 |
+
|
182 |
+
#=======================================================
|
183 |
+
# FINAL NOTE SEQ
|
184 |
+
|
185 |
+
# Writing final note asynchronously
|
186 |
+
|
187 |
+
if delta_time != 0:
|
188 |
+
melody_chords.extend([delta_time, dur+128, ptc+256])
|
189 |
+
if input_strip_notes:
|
190 |
+
if len(c) > 1:
|
191 |
+
times.append(delta_time)
|
192 |
+
durs.append(dur+128)
|
193 |
+
else:
|
194 |
+
times.append(delta_time)
|
195 |
+
durs.append(dur+128)
|
196 |
+
else:
|
197 |
+
melody_chords.extend([dur+128, ptc+256])
|
198 |
+
|
199 |
+
pe = e
|
200 |
+
|
201 |
+
#==================================================================
|
202 |
+
|
203 |
+
print('=' * 70)
|
204 |
+
|
205 |
+
print('Sample output events', melody_chords[:5])
|
206 |
+
print('=' * 70)
|
207 |
+
print('Generating...')
|
208 |
+
|
209 |
+
output = []
|
210 |
+
|
211 |
+
max_chords_limit = 8
|
212 |
+
temperature=0.9
|
213 |
+
num_memory_tokens=4096
|
214 |
+
|
215 |
+
output = []
|
216 |
+
|
217 |
+
idx = 0
|
218 |
+
|
219 |
+
for c in chords[:input_num_tokens]:
|
220 |
+
|
221 |
+
output.append(c)
|
222 |
+
|
223 |
+
if input_conditioning_type == 'Chords-Times' or input_conditioning_type == 'Chords-Times-Durations':
|
224 |
+
output.append(times[idx])
|
225 |
+
|
226 |
+
if input_conditioning_type == 'Chords-Times-Durations':
|
227 |
+
output.append(durs[idx])
|
228 |
+
|
229 |
+
x = torch.tensor([output] * 1, dtype=torch.long, device='cuda')
|
230 |
+
|
231 |
+
o = 0
|
232 |
+
|
233 |
+
ncount = 0
|
234 |
+
|
235 |
+
while o < 384 and ncount < max_chords_limit:
|
236 |
+
with ctx:
|
237 |
+
out = model.generate(x[-num_memory_tokens:],
|
238 |
+
1,
|
239 |
+
temperature=temperature,
|
240 |
+
return_prime=False,
|
241 |
+
verbose=False)
|
242 |
+
|
243 |
+
o = out.tolist()[0][0]
|
244 |
+
|
245 |
+
if 256 <= o < 384:
|
246 |
+
ncount += 1
|
247 |
+
|
248 |
+
if o < 384:
|
249 |
+
x = torch.cat((x, out), 1)
|
250 |
+
|
251 |
+
outy = x.tolist()[0][len(output):]
|
252 |
+
|
253 |
+
output.extend(outy)
|
254 |
+
|
255 |
+
idx += 1
|
256 |
+
|
257 |
+
if idx == len(chords[:input_num_tokens])-1:
|
258 |
+
break
|
259 |
+
|
260 |
+
print('=' * 70)
|
261 |
+
print('Done!')
|
262 |
+
print('=' * 70)
|
263 |
+
|
264 |
+
#===============================================================================
|
265 |
+
print('Rendering results...')
|
266 |
+
|
267 |
+
print('=' * 70)
|
268 |
+
print('Sample INTs', output[:12])
|
269 |
+
print('=' * 70)
|
270 |
+
|
271 |
+
out1 = output
|
272 |
+
|
273 |
+
if len(out1) != 0:
|
274 |
+
|
275 |
+
song = out1
|
276 |
+
song_f = []
|
277 |
+
|
278 |
+
time = 0
|
279 |
+
dur = 0
|
280 |
+
vel = 90
|
281 |
+
pitch = 0
|
282 |
+
channel = 0
|
283 |
+
|
284 |
+
patches = [0] * 16
|
285 |
+
|
286 |
+
channel = 0
|
287 |
+
|
288 |
+
for ss in song:
|
289 |
+
|
290 |
+
if 0 <= ss < 128:
|
291 |
+
|
292 |
+
time += ss * 32
|
293 |
+
|
294 |
+
if 128 <= ss < 256:
|
295 |
+
|
296 |
+
dur = (ss-128) * 32
|
297 |
+
|
298 |
+
if 256 <= ss < 384:
|
299 |
+
|
300 |
+
pitch = (ss-256)
|
301 |
+
|
302 |
+
vel = max(40, pitch)
|
303 |
+
|
304 |
+
song_f.append(['note', time, dur, channel, pitch, vel, 0])
|
305 |
+
|
306 |
+
fn1 = "Chords-Progressions-Transformer-Composition"
|
307 |
+
|
308 |
+
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
|
309 |
+
output_signature = 'Chords Progressions Transformer',
|
310 |
+
output_file_name = fn1,
|
311 |
+
track_name='Project Los Angeles',
|
312 |
+
list_of_MIDI_patches=patches
|
313 |
+
)
|
314 |
+
|
315 |
+
new_fn = fn1+'.mid'
|
316 |
+
|
317 |
+
|
318 |
+
audio = midi_to_colab_audio(new_fn,
|
319 |
+
soundfont_path=soundfont,
|
320 |
+
sample_rate=16000,
|
321 |
+
volume_scale=10,
|
322 |
+
output_for_gradio=True
|
323 |
+
)
|
324 |
+
|
325 |
+
print('Done!')
|
326 |
+
print('=' * 70)
|
327 |
+
|
328 |
+
#========================================================
|
329 |
+
|
330 |
+
output_midi_title = str(fn1)
|
331 |
+
output_midi_summary = str(song_f[:3])
|
332 |
+
output_midi = str(new_fn)
|
333 |
+
output_audio = (16000, audio)
|
334 |
+
|
335 |
+
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
|
336 |
+
|
337 |
+
print('Output MIDI file name:', output_midi)
|
338 |
+
print('Output MIDI title:', output_midi_title)
|
339 |
+
print('Output MIDI summary:', '')
|
340 |
+
print('=' * 70)
|
341 |
+
|
342 |
+
|
343 |
+
#========================================================
|
344 |
+
|
345 |
+
print('-' * 70)
|
346 |
+
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
347 |
+
print('-' * 70)
|
348 |
+
print('Req execution time:', (reqtime.time() - start_time), 'sec')
|
349 |
+
|
350 |
+
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
|
351 |
+
|
352 |
+
# =================================================================================================
|
353 |
+
|
354 |
+
if __name__ == "__main__":
|
355 |
+
|
356 |
+
PDT = timezone('US/Pacific')
|
357 |
+
|
358 |
+
print('=' * 70)
|
359 |
+
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
360 |
+
print('=' * 70)
|
361 |
+
|
362 |
+
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
|
363 |
+
|
364 |
+
app = gr.Blocks()
|
365 |
+
with app:
|
366 |
+
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Chords Progressions Transformer</h1>")
|
367 |
+
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Chords-conditioned music transformer</h1>")
|
368 |
+
gr.Markdown(
|
369 |
+
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Chords-Progressions-Transformer&style=flat)\n\n"
|
370 |
+
"Generate music based on chords progressions\n\n"
|
371 |
+
"Check out [Chords Progressions Transformer](https://github.com/asigalov61/Chords-Progressions-Transformer) on GitHub!\n\n"
|
372 |
+
"[Open In Colab]"
|
373 |
+
"(https://colab.research.google.com/github/asigalov61/Chords-Progressions-Transformer/blob/main/Chords_Progressions_Transformer.ipynb)"
|
374 |
+
" for faster execution and endless generation"
|
375 |
+
)
|
376 |
+
gr.Markdown("## Upload your MIDI or select a sample example MIDI")
|
377 |
+
|
378 |
+
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
|
379 |
+
input_num_tokens = gr.Slider(4, 128, value=32, step=1, label="Number of composition chords to generate progression for")
|
380 |
+
input_conditioning_type = gr.Radio(["Chords", "Chords-Times", "Chords-Times-Durations"], label="Conditioning type")
|
381 |
+
input_strip_notes = gr.Checkbox(label="Strip notes from the composition")
|
382 |
+
|
383 |
+
run_btn = gr.Button("generate", variant="primary")
|
384 |
+
|
385 |
+
gr.Markdown("## Generation results")
|
386 |
+
|
387 |
+
output_midi_title = gr.Textbox(label="Output MIDI title")
|
388 |
+
output_midi_summary = gr.Textbox(label="Output MIDI summary")
|
389 |
+
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
|
390 |
+
output_plot = gr.Plot(label="Output MIDI score plot")
|
391 |
+
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
|
392 |
+
|
393 |
+
|
394 |
+
run_event = run_btn.click(GenerateAccompaniment, [input_midi, input_num_tokens, input_conditioning_type, input_strip_notes],
|
395 |
+
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
|
396 |
+
|
397 |
+
gr.Examples(
|
398 |
+
[["Chords-Progressions-Transformer-Piano-Seed-1.mid", 128, "Chords", False],
|
399 |
+
["Chords-Progressions-Transformer-Piano-Seed-2.mid", 128, "Chords-Times", False],
|
400 |
+
["Chords-Progressions-Transformer-Piano-Seed-3.mid", 128, "Chords-Times-Durations", False],
|
401 |
+
["Chords-Progressions-Transformer-Piano-Seed-4.mid", 128, "Chords", False],
|
402 |
+
["Chords-Progressions-Transformer-Piano-Seed-5.mid", 128, "Chords-Times", False],
|
403 |
+
["Chords-Progressions-Transformer-Piano-Seed-6.mid", 128, "Chords-Times-Durations", False],
|
404 |
+
["Chords-Progressions-Transformer-MI-Seed-1.mid", 128, "Chords", False],
|
405 |
+
["Chords-Progressions-Transformer-MI-Seed-2.mid", 128, "Chords-Times", False],
|
406 |
+
["Chords-Progressions-Transformer-MI-Seed-3.mid", 128, "Chords-Times-Durations", False],
|
407 |
+
["Chords-Progressions-Transformer-MI-Seed-4.mid", 128, "Chords-Times", False],
|
408 |
+
["Chords-Progressions-Transformer-MI-Seed-5.mid", 128, "Chords", False],
|
409 |
+
["Chords-Progressions-Transformer-MI-Seed-6.mid", 128, "Chords-Times-Durations", False]
|
410 |
+
],
|
411 |
+
[input_midi, input_num_tokens, input_conditioning_type, input_strip_notes],
|
412 |
+
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
|
413 |
+
GenerateAccompaniment,
|
414 |
+
cache_examples=True,
|
415 |
+
)
|
416 |
+
|
417 |
+
app.queue().launch()
|
midi_to_colab_audio.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
fluidsynth
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
gradio
|
3 |
+
einops
|