Spaces:
Running
on
Zero
Running
on
Zero
import os.path | |
import time as reqtime | |
import datetime | |
from pytz import timezone | |
import torch | |
import spaces | |
import gradio as gr | |
from x_transformer_1_23_2 import * | |
import random | |
import tqdm | |
from midi_to_colab_audio import midi_to_colab_audio | |
import TMIDIX | |
import matplotlib.pyplot as plt | |
in_space = os.getenv("SYSTEM") == "spaces" | |
# ================================================================================================= | |
def GenerateAccompaniment(input_midi, input_num_tokens, input_conditioning_type, input_strip_notes): | |
print('=' * 70) | |
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
start_time = reqtime.time() | |
print('Loading model...') | |
SEQ_LEN = 8192 # Models seq len | |
PAD_IDX = 707 # Models pad index | |
DEVICE = 'cuda' # 'cuda' | |
# instantiate the model | |
model = TransformerWrapper( | |
num_tokens = PAD_IDX+1, | |
max_seq_len = SEQ_LEN, | |
attn_layers = Decoder(dim = 2048, depth = 4, heads = 16, attn_flash = True) | |
) | |
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX) | |
model.to(DEVICE) | |
print('=' * 70) | |
print('Loading model checkpoint...') | |
model.load_state_dict( | |
torch.load('Chords_Progressions_Transformer_Small_2048_Trained_Model_12947_steps_0.9316_loss_0.7386_acc.pth', | |
map_location=DEVICE)) | |
print('=' * 70) | |
model.eval() | |
if DEVICE == 'cpu': | |
dtype = torch.bfloat16 | |
else: | |
dtype = torch.float16 | |
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) | |
print('Done!') | |
print('=' * 70) | |
fn = os.path.basename(input_midi.name) | |
fn1 = fn.split('.')[0] | |
input_num_tokens = max(4, min(128, input_num_tokens)) | |
print('-' * 70) | |
print('Input file name:', fn) | |
print('Req num toks:', input_num_tokens) | |
print('Conditioning type:', input_conditioning_type) | |
print('Strip notes:', input_strip_notes) | |
print('-' * 70) | |
#=============================================================================== | |
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name) | |
#=============================================================================== | |
# Enhanced score notes | |
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] | |
no_drums_escore_notes = [e for e in escore_notes if e[6] < 80] | |
if len(no_drums_escore_notes) > 0: | |
#======================================================= | |
# PRE-PROCESSING | |
#=============================================================================== | |
# Augmented enhanced score notes | |
no_drums_escore_notes = TMIDIX.augment_enhanced_score_notes(no_drums_escore_notes) | |
cscore = TMIDIX.chordify_score([1000, no_drums_escore_notes]) | |
clean_cscore = [] | |
for c in cscore: | |
pitches = [] | |
cho = [] | |
for cc in c: | |
if cc[4] not in pitches: | |
cho.append(cc) | |
pitches.append(cc[4]) | |
clean_cscore.append(cho) | |
#======================================================= | |
# FINAL PROCESSING | |
melody_chords = [] | |
chords = [] | |
times = [0] | |
durs = [] | |
#======================================================= | |
# MAIN PROCESSING CYCLE | |
#======================================================= | |
pe = clean_cscore[0][0] | |
first_chord = True | |
for c in clean_cscore: | |
# Chords | |
c.sort(key=lambda x: x[4], reverse=True) | |
tones_chord = sorted(set([cc[4] % 12 for cc in c])) | |
try: | |
chord_token = TMIDIX.ALL_CHORDS_SORTED.index(tones_chord) | |
except: | |
checked_tones_chord = TMIDIX.check_and_fix_tones_chord(tones_chord) | |
chord_token = TMIDIX.ALL_CHORDS_SORTED.index(checked_tones_chord) | |
melody_chords.extend([chord_token+384]) | |
if input_strip_notes: | |
if len(tones_chord) > 1: | |
chords.extend([chord_token+384]) | |
else: | |
chords.extend([chord_token+384]) | |
if first_chord: | |
melody_chords.extend([0]) | |
first_chord = False | |
for e in c: | |
#======================================================= | |
# Timings... | |
time = e[1]-pe[1] | |
dur = e[2] | |
if time != 0 and time % 2 != 0: | |
time += 1 | |
if dur % 2 != 0: | |
dur += 1 | |
delta_time = int(max(0, min(255, time)) / 2) | |
# Durations | |
dur = int(max(0, min(255, dur)) / 2) | |
# Pitches | |
ptc = max(1, min(127, e[4])) | |
#======================================================= | |
# FINAL NOTE SEQ | |
# Writing final note asynchronously | |
if delta_time != 0: | |
melody_chords.extend([delta_time, dur+128, ptc+256]) | |
if input_strip_notes: | |
if len(c) > 1: | |
times.append(delta_time) | |
durs.append(dur+128) | |
else: | |
times.append(delta_time) | |
durs.append(dur+128) | |
else: | |
melody_chords.extend([dur+128, ptc+256]) | |
pe = e | |
#================================================================== | |
print('=' * 70) | |
print('Sample output events', melody_chords[:5]) | |
print('=' * 70) | |
print('Generating...') | |
output = [] | |
max_chords_limit = 8 | |
temperature=0.9 | |
num_memory_tokens=4096 | |
output = [] | |
idx = 0 | |
for c in chords[:input_num_tokens]: | |
output.append(c) | |
if input_conditioning_type == 'Chords-Times' or input_conditioning_type == 'Chords-Times-Durations': | |
output.append(times[idx]) | |
if input_conditioning_type == 'Chords-Times-Durations': | |
output.append(durs[idx]) | |
x = torch.tensor([output] * 1, dtype=torch.long, device='cuda') | |
o = 0 | |
ncount = 0 | |
while o < 384 and ncount < max_chords_limit: | |
with ctx: | |
out = model.generate(x[-num_memory_tokens:], | |
1, | |
temperature=temperature, | |
return_prime=False, | |
verbose=False) | |
o = out.tolist()[0][0] | |
if 256 <= o < 384: | |
ncount += 1 | |
if o < 384: | |
x = torch.cat((x, out), 1) | |
outy = x.tolist()[0][len(output):] | |
output.extend(outy) | |
idx += 1 | |
if idx == len(chords[:input_num_tokens])-1: | |
break | |
print('=' * 70) | |
print('Done!') | |
print('=' * 70) | |
#=============================================================================== | |
print('Rendering results...') | |
print('=' * 70) | |
print('Sample INTs', output[:12]) | |
print('=' * 70) | |
out1 = output | |
if len(out1) != 0: | |
song = out1 | |
song_f = [] | |
time = 0 | |
dur = 0 | |
vel = 90 | |
pitch = 0 | |
channel = 0 | |
patches = [0] * 16 | |
channel = 0 | |
for ss in song: | |
if 0 <= ss < 128: | |
time += ss * 32 | |
if 128 <= ss < 256: | |
dur = (ss-128) * 32 | |
if 256 <= ss < 384: | |
pitch = (ss-256) | |
vel = max(40, pitch) | |
song_f.append(['note', time, dur, channel, pitch, vel, 0]) | |
fn1 = "Chords-Progressions-Transformer-Composition" | |
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, | |
output_signature = 'Chords Progressions Transformer', | |
output_file_name = fn1, | |
track_name='Project Los Angeles', | |
list_of_MIDI_patches=patches | |
) | |
new_fn = fn1+'.mid' | |
audio = midi_to_colab_audio(new_fn, | |
soundfont_path=soundfont, | |
sample_rate=16000, | |
volume_scale=10, | |
output_for_gradio=True | |
) | |
print('Done!') | |
print('=' * 70) | |
#======================================================== | |
output_midi_title = str(fn1) | |
output_midi_summary = str(song_f[:3]) | |
output_midi = str(new_fn) | |
output_audio = (16000, audio) | |
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True) | |
print('Output MIDI file name:', output_midi) | |
print('Output MIDI title:', output_midi_title) | |
print('Output MIDI summary:', '') | |
print('=' * 70) | |
#======================================================== | |
print('-' * 70) | |
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('-' * 70) | |
print('Req execution time:', (reqtime.time() - start_time), 'sec') | |
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot | |
# ================================================================================================= | |
if __name__ == "__main__": | |
PDT = timezone('US/Pacific') | |
print('=' * 70) | |
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('=' * 70) | |
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Chords Progressions Transformer</h1>") | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Chords-conditioned music transformer</h1>") | |
gr.Markdown( | |
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Chords-Progressions-Transformer&style=flat)\n\n" | |
"Generate music based on chords progressions\n\n" | |
"Check out [Chords Progressions Transformer](https://github.com/asigalov61/Chords-Progressions-Transformer) on GitHub!\n\n" | |
"[Open In Colab]" | |
"(https://colab.research.google.com/github/asigalov61/Chords-Progressions-Transformer/blob/main/Chords_Progressions_Transformer.ipynb)" | |
" for faster execution and endless generation" | |
) | |
gr.Markdown("## Upload your MIDI or select a sample example MIDI") | |
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) | |
input_num_tokens = gr.Slider(4, 128, value=32, step=1, label="Number of composition chords to generate progression for") | |
input_conditioning_type = gr.Radio(["Chords", "Chords-Times", "Chords-Times-Durations"], label="Conditioning type") | |
input_strip_notes = gr.Checkbox(label="Strip notes from the composition") | |
run_btn = gr.Button("generate", variant="primary") | |
gr.Markdown("## Generation results") | |
output_midi_title = gr.Textbox(label="Output MIDI title") | |
output_midi_summary = gr.Textbox(label="Output MIDI summary") | |
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio") | |
output_plot = gr.Plot(label="Output MIDI score plot") | |
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) | |
run_event = run_btn.click(GenerateAccompaniment, [input_midi, input_num_tokens, input_conditioning_type, input_strip_notes], | |
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]) | |
gr.Examples( | |
[["Chords-Progressions-Transformer-Piano-Seed-1.mid", 128, "Chords", False], | |
["Chords-Progressions-Transformer-Piano-Seed-2.mid", 128, "Chords-Times", False], | |
["Chords-Progressions-Transformer-Piano-Seed-3.mid", 128, "Chords-Times-Durations", False], | |
["Chords-Progressions-Transformer-Piano-Seed-4.mid", 128, "Chords", False], | |
["Chords-Progressions-Transformer-Piano-Seed-5.mid", 128, "Chords-Times", False], | |
["Chords-Progressions-Transformer-Piano-Seed-6.mid", 128, "Chords-Times-Durations", False], | |
["Chords-Progressions-Transformer-MI-Seed-1.mid", 128, "Chords", False], | |
["Chords-Progressions-Transformer-MI-Seed-2.mid", 128, "Chords-Times", False], | |
["Chords-Progressions-Transformer-MI-Seed-3.mid", 128, "Chords-Times-Durations", False], | |
["Chords-Progressions-Transformer-MI-Seed-4.mid", 128, "Chords-Times", False], | |
["Chords-Progressions-Transformer-MI-Seed-5.mid", 128, "Chords", False], | |
["Chords-Progressions-Transformer-MI-Seed-6.mid", 128, "Chords-Times-Durations", False] | |
], | |
[input_midi, input_num_tokens, input_conditioning_type, input_strip_notes], | |
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot], | |
GenerateAccompaniment, | |
cache_examples=True, | |
) | |
app.queue().launch() |