asigalov61
commited on
Delete Melody2Song_Seq2Seq_Music_Transformer.ipynb
Browse files
Melody2Song_Seq2Seq_Music_Transformer.ipynb
DELETED
@@ -1,523 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"metadata": {
|
6 |
-
"id": "VGrGd6__l5ch"
|
7 |
-
},
|
8 |
-
"source": [
|
9 |
-
"# Melody2Song Seq2Seq Music Transformer (ver. 1.0)\n",
|
10 |
-
"\n",
|
11 |
-
"***\n",
|
12 |
-
"\n",
|
13 |
-
"Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools\n",
|
14 |
-
"\n",
|
15 |
-
"***\n",
|
16 |
-
"\n",
|
17 |
-
"WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/\n",
|
18 |
-
"\n",
|
19 |
-
"***\n",
|
20 |
-
"\n",
|
21 |
-
"#### Project Los Angeles\n",
|
22 |
-
"\n",
|
23 |
-
"#### Tegridy Code 2024\n",
|
24 |
-
"\n",
|
25 |
-
"***"
|
26 |
-
]
|
27 |
-
},
|
28 |
-
{
|
29 |
-
"cell_type": "markdown",
|
30 |
-
"metadata": {
|
31 |
-
"id": "shLrgoXdl5cj"
|
32 |
-
},
|
33 |
-
"source": [
|
34 |
-
"# (GPU CHECK)"
|
35 |
-
]
|
36 |
-
},
|
37 |
-
{
|
38 |
-
"cell_type": "code",
|
39 |
-
"execution_count": null,
|
40 |
-
"metadata": {
|
41 |
-
"id": "X3rABEpKCO02",
|
42 |
-
"cellView": "form"
|
43 |
-
},
|
44 |
-
"outputs": [],
|
45 |
-
"source": [
|
46 |
-
"# @title NVIDIA GPU Check\n",
|
47 |
-
"!nvidia-smi"
|
48 |
-
]
|
49 |
-
},
|
50 |
-
{
|
51 |
-
"cell_type": "markdown",
|
52 |
-
"metadata": {
|
53 |
-
"id": "0RcVC4btl5ck"
|
54 |
-
},
|
55 |
-
"source": [
|
56 |
-
"# (SETUP ENVIRONMENT)"
|
57 |
-
]
|
58 |
-
},
|
59 |
-
{
|
60 |
-
"cell_type": "code",
|
61 |
-
"execution_count": null,
|
62 |
-
"metadata": {
|
63 |
-
"id": "viHgEaNACPTs",
|
64 |
-
"cellView": "form"
|
65 |
-
},
|
66 |
-
"outputs": [],
|
67 |
-
"source": [
|
68 |
-
"# @title Install requirements\n",
|
69 |
-
"!git clone --depth 1 https://github.com/asigalov61/tegridy-tools\n",
|
70 |
-
"!pip install einops\n",
|
71 |
-
"!pip install torch-summary\n",
|
72 |
-
"!apt install fluidsynth"
|
73 |
-
]
|
74 |
-
},
|
75 |
-
{
|
76 |
-
"cell_type": "code",
|
77 |
-
"execution_count": null,
|
78 |
-
"metadata": {
|
79 |
-
"id": "DzCOZU_gBiQV",
|
80 |
-
"cellView": "form"
|
81 |
-
},
|
82 |
-
"outputs": [],
|
83 |
-
"source": [
|
84 |
-
"# @title Load all needed modules\n",
|
85 |
-
"\n",
|
86 |
-
"print('=' * 70)\n",
|
87 |
-
"print('Loading needed modules...')\n",
|
88 |
-
"print('=' * 70)\n",
|
89 |
-
"\n",
|
90 |
-
"import os\n",
|
91 |
-
"import pickle\n",
|
92 |
-
"import random\n",
|
93 |
-
"import secrets\n",
|
94 |
-
"import tqdm\n",
|
95 |
-
"import math\n",
|
96 |
-
"import torch\n",
|
97 |
-
"\n",
|
98 |
-
"import matplotlib.pyplot as plt\n",
|
99 |
-
"\n",
|
100 |
-
"from torchsummary import summary\n",
|
101 |
-
"\n",
|
102 |
-
"%cd /content/tegridy-tools/tegridy-tools/\n",
|
103 |
-
"\n",
|
104 |
-
"import TMIDIX\n",
|
105 |
-
"from midi_to_colab_audio import midi_to_colab_audio\n",
|
106 |
-
"\n",
|
107 |
-
"%cd /content/tegridy-tools/tegridy-tools/X-Transformer\n",
|
108 |
-
"\n",
|
109 |
-
"from x_transformer_1_23_2 import *\n",
|
110 |
-
"\n",
|
111 |
-
"%cd /content/\n",
|
112 |
-
"\n",
|
113 |
-
"import random\n",
|
114 |
-
"\n",
|
115 |
-
"from sklearn import metrics\n",
|
116 |
-
"\n",
|
117 |
-
"from IPython.display import Audio, display\n",
|
118 |
-
"\n",
|
119 |
-
"from huggingface_hub import hf_hub_download\n",
|
120 |
-
"\n",
|
121 |
-
"from google.colab import files\n",
|
122 |
-
"\n",
|
123 |
-
"print('=' * 70)\n",
|
124 |
-
"print('Done')\n",
|
125 |
-
"print('=' * 70)\n",
|
126 |
-
"print('Torch version:', torch.__version__)\n",
|
127 |
-
"print('=' * 70)\n",
|
128 |
-
"print('Enjoy! :)')\n",
|
129 |
-
"print('=' * 70)"
|
130 |
-
]
|
131 |
-
},
|
132 |
-
{
|
133 |
-
"cell_type": "markdown",
|
134 |
-
"source": [
|
135 |
-
"# (SETUP DATA AND MODEL)"
|
136 |
-
],
|
137 |
-
"metadata": {
|
138 |
-
"id": "SQ1_7P4bLdtB"
|
139 |
-
}
|
140 |
-
},
|
141 |
-
{
|
142 |
-
"cell_type": "code",
|
143 |
-
"source": [
|
144 |
-
"#@title Load Melody2Song Seq2Seq Music Trnasofmer Data and Pre-Trained Model\n",
|
145 |
-
"\n",
|
146 |
-
"#@markdown Model precision option\n",
|
147 |
-
"\n",
|
148 |
-
"model_precision = \"bfloat16\" # @param [\"bfloat16\", \"float16\"]\n",
|
149 |
-
"\n",
|
150 |
-
"plot_tokens_embeddings = True # @param {type:\"boolean\"}\n",
|
151 |
-
"\n",
|
152 |
-
"print('=' * 70)\n",
|
153 |
-
"print('Donwloading Melody2Song Seq2Seq Music Transformer Data File...')\n",
|
154 |
-
"print('=' * 70)\n",
|
155 |
-
"\n",
|
156 |
-
"data_path = '/content'\n",
|
157 |
-
"\n",
|
158 |
-
"if os.path.isfile(data_path+'/Melody2Song_Seq2Seq_Music_Transformer_Seed_Melodies_Data.pickle'):\n",
|
159 |
-
" print('Data file already exists...')\n",
|
160 |
-
"\n",
|
161 |
-
"else:\n",
|
162 |
-
" hf_hub_download(repo_id='asigalov61/Melody2Song-Seq2Seq-Music-Transformer',\n",
|
163 |
-
" repo_type='space',\n",
|
164 |
-
" filename='Melody2Song_Seq2Seq_Music_Transformer_Seed_Melodies_Data.pickle',\n",
|
165 |
-
" local_dir=data_path,\n",
|
166 |
-
" )\n",
|
167 |
-
"\n",
|
168 |
-
"print('=' * 70)\n",
|
169 |
-
"seed_melodies_data = TMIDIX.Tegridy_Any_Pickle_File_Reader('Melody2Song_Seq2Seq_Music_Transformer_Seed_Melodies_Data')\n",
|
170 |
-
"\n",
|
171 |
-
"print('=' * 70)\n",
|
172 |
-
"print('Loading Melody2Song Seq2Seq Music Transformer Pre-Trained Model...')\n",
|
173 |
-
"print('Please wait...')\n",
|
174 |
-
"print('=' * 70)\n",
|
175 |
-
"\n",
|
176 |
-
"full_path_to_models_dir = \"/content\"\n",
|
177 |
-
"\n",
|
178 |
-
"model_checkpoint_file_name = 'Melody2Song_Seq2Seq_Music_Transformer_Trained_Model_28482_steps_0.719_loss_0.7865_acc.pth'\n",
|
179 |
-
"model_path = full_path_to_models_dir+'/'+model_checkpoint_file_name\n",
|
180 |
-
"num_layers = 24\n",
|
181 |
-
"if os.path.isfile(model_path):\n",
|
182 |
-
" print('Model already exists...')\n",
|
183 |
-
"\n",
|
184 |
-
"else:\n",
|
185 |
-
" hf_hub_download(repo_id='asigalov61/Melody2Song-Seq2Seq-Music-Transformer',\n",
|
186 |
-
" repo_type='space',\n",
|
187 |
-
" filename=model_checkpoint_file_name,\n",
|
188 |
-
" local_dir=full_path_to_models_dir,\n",
|
189 |
-
" )\n",
|
190 |
-
"\n",
|
191 |
-
"\n",
|
192 |
-
"print('=' * 70)\n",
|
193 |
-
"print('Instantiating model...')\n",
|
194 |
-
"\n",
|
195 |
-
"torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul\n",
|
196 |
-
"torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn\n",
|
197 |
-
"device_type = 'cuda'\n",
|
198 |
-
"\n",
|
199 |
-
"if model_precision == 'bfloat16' and torch.cuda.is_bf16_supported():\n",
|
200 |
-
" dtype = 'bfloat16'\n",
|
201 |
-
"else:\n",
|
202 |
-
" dtype = 'float16'\n",
|
203 |
-
"\n",
|
204 |
-
"if model_precision == 'float16':\n",
|
205 |
-
" dtype = 'float16'\n",
|
206 |
-
"\n",
|
207 |
-
"ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]\n",
|
208 |
-
"ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)\n",
|
209 |
-
"\n",
|
210 |
-
"SEQ_LEN = 2560\n",
|
211 |
-
"PAD_IDX = 514\n",
|
212 |
-
"\n",
|
213 |
-
"# instantiate the model\n",
|
214 |
-
"\n",
|
215 |
-
"model = TransformerWrapper(\n",
|
216 |
-
" num_tokens = PAD_IDX+1,\n",
|
217 |
-
" max_seq_len = SEQ_LEN,\n",
|
218 |
-
" attn_layers = Decoder(dim = 1024, depth = num_layers, heads = 16, attn_flash = True)\n",
|
219 |
-
")\n",
|
220 |
-
"\n",
|
221 |
-
"model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)\n",
|
222 |
-
"\n",
|
223 |
-
"model.cuda()\n",
|
224 |
-
"print('=' * 70)\n",
|
225 |
-
"\n",
|
226 |
-
"print('Loading model checkpoint...')\n",
|
227 |
-
"\n",
|
228 |
-
"model.load_state_dict(torch.load(model_path))\n",
|
229 |
-
"print('=' * 70)\n",
|
230 |
-
"\n",
|
231 |
-
"model.eval()\n",
|
232 |
-
"\n",
|
233 |
-
"print('Done!')\n",
|
234 |
-
"print('=' * 70)\n",
|
235 |
-
"\n",
|
236 |
-
"print('Model will use', dtype, 'precision...')\n",
|
237 |
-
"print('=' * 70)\n",
|
238 |
-
"\n",
|
239 |
-
"# Model stats\n",
|
240 |
-
"print('Model summary...')\n",
|
241 |
-
"summary(model)\n",
|
242 |
-
"\n",
|
243 |
-
"if plot_tokens_embeddings:\n",
|
244 |
-
"\n",
|
245 |
-
" tok_emb = model.net.token_emb.emb.weight.detach().cpu().tolist()\n",
|
246 |
-
"\n",
|
247 |
-
" cos_sim = metrics.pairwise_distances(\n",
|
248 |
-
" tok_emb, metric='cosine'\n",
|
249 |
-
" )\n",
|
250 |
-
" plt.figure(figsize=(7, 7))\n",
|
251 |
-
" plt.imshow(cos_sim, cmap=\"inferno\", interpolation=\"nearest\")\n",
|
252 |
-
" im_ratio = cos_sim.shape[0] / cos_sim.shape[1]\n",
|
253 |
-
" plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)\n",
|
254 |
-
" plt.xlabel(\"Position\")\n",
|
255 |
-
" plt.ylabel(\"Position\")\n",
|
256 |
-
" plt.tight_layout()\n",
|
257 |
-
" plt.plot()\n",
|
258 |
-
" plt.savefig(\"/content/Melody2Song-Seq2Seq-Music-Transformer-Tokens-Embeddings-Plot.png\", bbox_inches=\"tight\")"
|
259 |
-
],
|
260 |
-
"metadata": {
|
261 |
-
"cellView": "form",
|
262 |
-
"id": "z7QLJ6FajxPA"
|
263 |
-
},
|
264 |
-
"execution_count": null,
|
265 |
-
"outputs": []
|
266 |
-
},
|
267 |
-
{
|
268 |
-
"cell_type": "markdown",
|
269 |
-
"source": [
|
270 |
-
"# (LOAD SEED MELODY)"
|
271 |
-
],
|
272 |
-
"metadata": {
|
273 |
-
"id": "NdJ1_A8gNoV3"
|
274 |
-
}
|
275 |
-
},
|
276 |
-
{
|
277 |
-
"cell_type": "code",
|
278 |
-
"execution_count": null,
|
279 |
-
"metadata": {
|
280 |
-
"id": "AIvb6MmSO9R3",
|
281 |
-
"cellView": "form"
|
282 |
-
},
|
283 |
-
"outputs": [],
|
284 |
-
"source": [
|
285 |
-
"# @title Load desired seed melody\n",
|
286 |
-
"\n",
|
287 |
-
"#@markdown NOTE: If custom MIDI file is not provided, sample seed melody will be used instead\n",
|
288 |
-
"\n",
|
289 |
-
"full_path_to_custom_seed_melody_MIDI_file = \"/content/tegridy-tools/tegridy-tools/seed-melody.mid\" # @param {type:\"string\"}\n",
|
290 |
-
"sample_seed_melody_number = 0 # @param {type:\"slider\", min:0, max:203664, step:1}\n",
|
291 |
-
"\n",
|
292 |
-
"print('=' * 70)\n",
|
293 |
-
"print('Loading seed melody...')\n",
|
294 |
-
"print('=' * 70)\n",
|
295 |
-
"\n",
|
296 |
-
"if full_path_to_custom_seed_melody_MIDI_file != '':\n",
|
297 |
-
"\n",
|
298 |
-
" #===============================================================================\n",
|
299 |
-
" # Raw single-track ms score\n",
|
300 |
-
"\n",
|
301 |
-
" raw_score = TMIDIX.midi2single_track_ms_score(full_path_to_custom_seed_melody_MIDI_file)\n",
|
302 |
-
"\n",
|
303 |
-
" #===============================================================================\n",
|
304 |
-
" # Enhanced score notes\n",
|
305 |
-
"\n",
|
306 |
-
" escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]\n",
|
307 |
-
"\n",
|
308 |
-
" #===============================================================================\n",
|
309 |
-
" # Augmented enhanced score notes\n",
|
310 |
-
"\n",
|
311 |
-
" escore_notes = TMIDIX.recalculate_score_timings(TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32))\n",
|
312 |
-
"\n",
|
313 |
-
" cscore = TMIDIX.chordify_score([1000, escore_notes])\n",
|
314 |
-
"\n",
|
315 |
-
" fixed_mel_score = TMIDIX.fix_monophonic_score_durations([c[0] for c in cscore])\n",
|
316 |
-
"\n",
|
317 |
-
" melody = []\n",
|
318 |
-
"\n",
|
319 |
-
" pe = fixed_mel_score[0]\n",
|
320 |
-
"\n",
|
321 |
-
" for s in fixed_mel_score:\n",
|
322 |
-
"\n",
|
323 |
-
" dtime = max(0, min(127, s[1]-pe[1]))\n",
|
324 |
-
" dur = max(1, min(127, s[2]))\n",
|
325 |
-
" ptc = max(1, min(127, s[4]))\n",
|
326 |
-
"\n",
|
327 |
-
" chan = 1\n",
|
328 |
-
"\n",
|
329 |
-
" melody.extend([dtime, dur+128, (128 * chan)+ptc+256])\n",
|
330 |
-
"\n",
|
331 |
-
" pe = s\n",
|
332 |
-
"\n",
|
333 |
-
" if len(melody) >= 192:\n",
|
334 |
-
" melody = [512] + melody[:192] + [513]\n",
|
335 |
-
"\n",
|
336 |
-
" else:\n",
|
337 |
-
" mult = math.ceil(192 / len(melody))\n",
|
338 |
-
" melody = melody * mult\n",
|
339 |
-
" melody = [512] + melody[:192] + [513]\n",
|
340 |
-
"\n",
|
341 |
-
" print('Loaded custom MIDI melody:', full_path_to_custom_seed_melody_MIDI_file)\n",
|
342 |
-
" print('=' * 70)\n",
|
343 |
-
"\n",
|
344 |
-
"else:\n",
|
345 |
-
" melody = seed_melodies_data[sample_seed_melody_number]\n",
|
346 |
-
" print('Loaded sample seed melody #', sample_seed_melody_number)\n",
|
347 |
-
" print('=' * 70)\n",
|
348 |
-
"\n",
|
349 |
-
"print('Sample melody INTs:', melody[:10])\n",
|
350 |
-
"print('=' * 70)\n",
|
351 |
-
"print('Done!')\n",
|
352 |
-
"print('=' * 70)"
|
353 |
-
]
|
354 |
-
},
|
355 |
-
{
|
356 |
-
"cell_type": "markdown",
|
357 |
-
"metadata": {
|
358 |
-
"id": "feXay_Ed7mG5"
|
359 |
-
},
|
360 |
-
"source": [
|
361 |
-
"# (GENERATE)"
|
362 |
-
]
|
363 |
-
},
|
364 |
-
{
|
365 |
-
"cell_type": "code",
|
366 |
-
"execution_count": null,
|
367 |
-
"metadata": {
|
368 |
-
"id": "naf65RxUXwDg",
|
369 |
-
"cellView": "form"
|
370 |
-
},
|
371 |
-
"outputs": [],
|
372 |
-
"source": [
|
373 |
-
"# @title Generate song from melody\n",
|
374 |
-
"\n",
|
375 |
-
"melody_MIDI_patch_number = 40 # @param {type:\"slider\", min:0, max:127, step:1}\n",
|
376 |
-
"accompaniment_MIDI_patch_number = 0 # @param {type:\"slider\", min:0, max:127, step:1}\n",
|
377 |
-
"number_of_tokens_to_generate = 900 # @param {type:\"slider\", min:15, max:2354, step:3}\n",
|
378 |
-
"number_of_batches_to_generate = 4 # @param {type:\"slider\", min:1, max:16, step:1}\n",
|
379 |
-
"top_k_value = 25 # @param {type:\"slider\", min:1, max:50, step:1}\n",
|
380 |
-
"temperature = 0.9 # @param {type:\"slider\", min:0.1, max:1, step:0.05}\n",
|
381 |
-
"render_MIDI_to_audio = True # @param {type:\"boolean\"}\n",
|
382 |
-
"\n",
|
383 |
-
"print('=' * 70)\n",
|
384 |
-
"print('Melody2Song Seq1Seq Music Transformer Model Generator')\n",
|
385 |
-
"print('=' * 70)\n",
|
386 |
-
"\n",
|
387 |
-
"print('Generating...')\n",
|
388 |
-
"print('=' * 70)\n",
|
389 |
-
"\n",
|
390 |
-
"model.eval()\n",
|
391 |
-
"\n",
|
392 |
-
"torch.cuda.empty_cache()\n",
|
393 |
-
"\n",
|
394 |
-
"x = (torch.tensor([melody] * number_of_batches_to_generate, dtype=torch.long, device='cuda'))\n",
|
395 |
-
"\n",
|
396 |
-
"with ctx:\n",
|
397 |
-
" out = model.generate(x,\n",
|
398 |
-
" number_of_tokens_to_generate,\n",
|
399 |
-
" filter_logits_fn=top_k,\n",
|
400 |
-
" filter_kwargs={'k': top_k_value},\n",
|
401 |
-
" temperature=0.9,\n",
|
402 |
-
" return_prime=False,\n",
|
403 |
-
" verbose=True)\n",
|
404 |
-
"\n",
|
405 |
-
"output = out.tolist()\n",
|
406 |
-
"\n",
|
407 |
-
"print('=' * 70)\n",
|
408 |
-
"print('Done!')\n",
|
409 |
-
"print('=' * 70)\n",
|
410 |
-
"\n",
|
411 |
-
"#======================================================================\n",
|
412 |
-
"print('Rendering results...')\n",
|
413 |
-
"\n",
|
414 |
-
"for i in range(number_of_batches_to_generate):\n",
|
415 |
-
"\n",
|
416 |
-
" print('=' * 70)\n",
|
417 |
-
" print('Batch #', i)\n",
|
418 |
-
" print('=' * 70)\n",
|
419 |
-
"\n",
|
420 |
-
" out1 = output[i]\n",
|
421 |
-
"\n",
|
422 |
-
" print('Sample INTs', out1[:12])\n",
|
423 |
-
" print('=' * 70)\n",
|
424 |
-
"\n",
|
425 |
-
" if len(out1) != 0:\n",
|
426 |
-
"\n",
|
427 |
-
" song = out1\n",
|
428 |
-
" song_f = []\n",
|
429 |
-
"\n",
|
430 |
-
" time = 0\n",
|
431 |
-
" dur = 0\n",
|
432 |
-
" vel = 90\n",
|
433 |
-
" pitch = 0\n",
|
434 |
-
" channel = 0\n",
|
435 |
-
"\n",
|
436 |
-
" patches = [0] * 16\n",
|
437 |
-
" patches[0] = accompaniment_MIDI_patch_number\n",
|
438 |
-
" patches[3] = melody_MIDI_patch_number\n",
|
439 |
-
"\n",
|
440 |
-
" for ss in song:\n",
|
441 |
-
"\n",
|
442 |
-
" if 0 < ss < 128:\n",
|
443 |
-
"\n",
|
444 |
-
" time += (ss * 32)\n",
|
445 |
-
"\n",
|
446 |
-
" if 128 < ss < 256:\n",
|
447 |
-
"\n",
|
448 |
-
" dur = (ss-128) * 32\n",
|
449 |
-
"\n",
|
450 |
-
" if 256 < ss < 512:\n",
|
451 |
-
"\n",
|
452 |
-
" pitch = (ss-256) % 128\n",
|
453 |
-
"\n",
|
454 |
-
" channel = (ss-256) // 128\n",
|
455 |
-
"\n",
|
456 |
-
" if channel == 1:\n",
|
457 |
-
" channel = 3\n",
|
458 |
-
" vel = 110 + (pitch % 12)\n",
|
459 |
-
" song_f.append(['note', time, dur, channel, pitch, vel, melody_MIDI_patch_number])\n",
|
460 |
-
"\n",
|
461 |
-
" else:\n",
|
462 |
-
" vel = 80 + (pitch % 12)\n",
|
463 |
-
" channel = 0\n",
|
464 |
-
" song_f.append(['note', time, dur, channel, pitch, vel, accompaniment_MIDI_patch_number])\n",
|
465 |
-
"\n",
|
466 |
-
" detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,\n",
|
467 |
-
" output_signature = 'Melody2Song Seq2Seq Music Transformer',\n",
|
468 |
-
" output_file_name = '/content/Melody2Song-Seq2Seq-Music-Transformer-Composition_'+str(i),\n",
|
469 |
-
" track_name='Project Los Angeles',\n",
|
470 |
-
" list_of_MIDI_patches=patches\n",
|
471 |
-
" )\n",
|
472 |
-
" print('=' * 70)\n",
|
473 |
-
" print('Displaying resulting composition...')\n",
|
474 |
-
" print('=' * 70)\n",
|
475 |
-
"\n",
|
476 |
-
" fname = '/content/Melody2Song-Seq2Seq-Music-Transformer-Composition_'+str(i)\n",
|
477 |
-
"\n",
|
478 |
-
" if render_MIDI_to_audio:\n",
|
479 |
-
" midi_audio = midi_to_colab_audio(fname + '.mid')\n",
|
480 |
-
" display(Audio(midi_audio, rate=16000, normalize=False))\n",
|
481 |
-
"\n",
|
482 |
-
" TMIDIX.plot_ms_SONG(song_f, plot_title=fname)"
|
483 |
-
]
|
484 |
-
},
|
485 |
-
{
|
486 |
-
"cell_type": "markdown",
|
487 |
-
"metadata": {
|
488 |
-
"id": "z87TlDTVl5cp"
|
489 |
-
},
|
490 |
-
"source": [
|
491 |
-
"# Congrats! You did it! :)"
|
492 |
-
]
|
493 |
-
}
|
494 |
-
],
|
495 |
-
"metadata": {
|
496 |
-
"accelerator": "GPU",
|
497 |
-
"colab": {
|
498 |
-
"gpuClass": "premium",
|
499 |
-
"gpuType": "L4",
|
500 |
-
"private_outputs": true,
|
501 |
-
"provenance": [],
|
502 |
-
"machine_shape": "hm"
|
503 |
-
},
|
504 |
-
"kernelspec": {
|
505 |
-
"display_name": "Python 3",
|
506 |
-
"name": "python3"
|
507 |
-
},
|
508 |
-
"language_info": {
|
509 |
-
"codemirror_mode": {
|
510 |
-
"name": "ipython",
|
511 |
-
"version": 3
|
512 |
-
},
|
513 |
-
"file_extension": ".py",
|
514 |
-
"mimetype": "text/x-python",
|
515 |
-
"name": "python",
|
516 |
-
"nbconvert_exporter": "python",
|
517 |
-
"pygments_lexer": "ipython3",
|
518 |
-
"version": "3.10.12"
|
519 |
-
}
|
520 |
-
},
|
521 |
-
"nbformat": 4,
|
522 |
-
"nbformat_minor": 0
|
523 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|