Next
the input
9a0a118 verified
raw
history blame
7.92 kB
import os.path
import time as reqtime
import datetime
from pytz import timezone
import torch
import spaces
import gradio as gr
from x_transformer_1_23_2 import *
import random
import tqdm
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
in_space = os.getenv("SYSTEM") == "spaces"
# =================================================================================================
@spaces.GPU
def GenerateMusic(input_title):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('Loading model...')
SEQ_LEN = 2048
PAD_IDX = 780
DEVICE = 'cuda' # 'cuda'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024, depth = 32, heads = 16, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX)
model.to(DEVICE)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Descriptive_Music_Transformer_Trained_Model_20631_steps_0.3218_loss_0.8947_acc.pth',
map_location=DEVICE))
print('=' * 70)
model.eval()
if DEVICE == 'cpu':
dtype = torch.bfloat16
else:
dtype = torch.float16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('Done!')
print('=' * 70)
input_num_tokens = 2040
print('-' * 70)
#===============================================================================
print('=' * 70)
print('Loading helper functions...')
def txt2tokens(txt):
return [ord(char)+648 if 0 < ord(char) < 128 else 0+648 for char in txt.lower()]
def tokens2txt(tokens):
return [chr(tok-648) for tok in tokens if 0+648 < tok < 128+648 ]
print('=' * 70)
print('Generating...')
#@title Standard Text-to-Music Generator
#@markdown Generation settings
number_of_tokens_to_generate = input_num_tokens
number_of_batches_to_generate = 1 #@param {type:"slider", min:1, max:16, step:1}
temperature = 0.9 # @param {type:"slider", min:0.1, max:1, step:0.05}
print('=' * 70)
print('Descriptive Music Transformer Model Generator')
print('=' * 70)
outy = [777]
torch.cuda.empty_cache()
inp = [outy] * number_of_batches_to_generate
inp = torch.LongTensor(inp).cuda()
with ctx:
out = model.generate(inp,
number_of_tokens_to_generate,
temperature=temperature,
return_prime=True,
verbose=False)
out0 = out.tolist()
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
out1 = out0[0]
print('Sample INTs', out1[:12])
print('=' * 70)
generated_song_title = ''.join(tokens2txt(out1)).title()
print('Generated song title:', generated_song_title)
print('=' * 70)
if len(out1) != 0:
song = out1
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
chan = 0
for ss in song:
if 0 <= ss < 128:
time += ss * 32
if 128 <= ss < 256:
dur = (ss-128) * 32
if 256 <= ss < 2432:
chan = (ss-256) // 128
if chan < 9:
channel = chan
elif 9 < chan < 15:
channel = chan+1
elif chan == 15:
channel = 15
elif chan == 16:
channel = 9
pitch = (ss-256) % 128
if 2432 <= ss < 2440:
vel = (((ss-2432)+1) * 15)-1
song_f.append(['note', time, dur, channel, pitch, vel, chan*8 ])
fn1 = "Text-to-Music-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Text-to-Music Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = generated_song_title
output_midi_summary = str(song_f[:3])
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', output_midi_summary)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Descriptive Music Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>A music transformer that describes music it generates</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Descriptive-Music-Transformer&style=flat)\n\n"
"Generate music based on a title of your imagination :)\n\n"
"Check out [Annotated MIDI Dataset](https://huggingface.co/datasets/asigalov61/Annotated-MIDI-Dataset) on Hugging Face!\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/Text-to-Music-Transformer/blob/main/Text_to_Music_Transformer.ipynb)"
" for faster execution and endless generation"
)
input_title = gr.File(label="input")
run_btn = gr.Button("generate", variant="primary")
gr.Markdown("## Generation results")
output_midi_title = gr.Textbox(label="Generated MIDI title")
output_midi_summary = gr.Textbox(label="Generated music description")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(GenerateMusic, [input_title],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
app.queue().launch()