|
import os.path |
|
|
|
import time as reqtime |
|
import datetime |
|
from pytz import timezone |
|
|
|
import torch |
|
|
|
import spaces |
|
import gradio as gr |
|
|
|
from x_transformer_1_23_2 import * |
|
import random |
|
import tqdm |
|
|
|
from midi_to_colab_audio import midi_to_colab_audio |
|
import TMIDIX |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
in_space = os.getenv("SYSTEM") == "spaces" |
|
|
|
|
|
|
|
@spaces.GPU |
|
def GenerateMusic(input_title): |
|
|
|
print('=' * 70) |
|
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
start_time = reqtime.time() |
|
|
|
print('Loading model...') |
|
|
|
SEQ_LEN = 2048 |
|
PAD_IDX = 780 |
|
DEVICE = 'cuda' |
|
|
|
|
|
|
|
model = TransformerWrapper( |
|
num_tokens = PAD_IDX+1, |
|
max_seq_len = SEQ_LEN, |
|
attn_layers = Decoder(dim = 1024, depth = 32, heads = 16, attn_flash = True) |
|
) |
|
|
|
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX) |
|
|
|
model.to(DEVICE) |
|
print('=' * 70) |
|
|
|
print('Loading model checkpoint...') |
|
|
|
model.load_state_dict( |
|
torch.load('Descriptive_Music_Transformer_Trained_Model_20631_steps_0.3218_loss_0.8947_acc.pth', |
|
map_location=DEVICE)) |
|
print('=' * 70) |
|
|
|
model.eval() |
|
|
|
if DEVICE == 'cpu': |
|
dtype = torch.bfloat16 |
|
else: |
|
dtype = torch.float16 |
|
|
|
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
input_num_tokens = 2040 |
|
print('-' * 70) |
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Loading helper functions...') |
|
|
|
def txt2tokens(txt): |
|
return [ord(char)+648 if 0 < ord(char) < 128 else 0+648 for char in txt.lower()] |
|
|
|
def tokens2txt(tokens): |
|
return [chr(tok-648) for tok in tokens if 0+648 < tok < 128+648 ] |
|
|
|
print('=' * 70) |
|
print('Generating...') |
|
|
|
|
|
|
|
|
|
|
|
number_of_tokens_to_generate = input_num_tokens |
|
number_of_batches_to_generate = 1 |
|
temperature = 0.9 |
|
|
|
print('=' * 70) |
|
print('Descriptive Music Transformer Model Generator') |
|
print('=' * 70) |
|
|
|
outy = [777] |
|
|
|
torch.cuda.empty_cache() |
|
|
|
inp = [outy] * number_of_batches_to_generate |
|
|
|
inp = torch.LongTensor(inp).cuda() |
|
|
|
with ctx: |
|
out = model.generate(inp, |
|
number_of_tokens_to_generate, |
|
temperature=temperature, |
|
return_prime=True, |
|
verbose=False) |
|
|
|
out0 = out.tolist() |
|
|
|
print('=' * 70) |
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
print('Rendering results...') |
|
print('=' * 70) |
|
|
|
out1 = out0[0] |
|
|
|
print('Sample INTs', out1[:12]) |
|
print('=' * 70) |
|
|
|
generated_song_title = ''.join(tokens2txt(out1)).title() |
|
|
|
print('Generated song title:', generated_song_title) |
|
print('=' * 70) |
|
|
|
if len(out1) != 0: |
|
|
|
song = out1 |
|
song_f = [] |
|
|
|
time = 0 |
|
dur = 0 |
|
vel = 90 |
|
pitch = 0 |
|
channel = 0 |
|
chan = 0 |
|
|
|
for ss in song: |
|
|
|
if 0 <= ss < 128: |
|
|
|
time += ss * 32 |
|
|
|
if 128 <= ss < 256: |
|
|
|
dur = (ss-128) * 32 |
|
|
|
if 256 <= ss < 2432: |
|
|
|
chan = (ss-256) // 128 |
|
|
|
if chan < 9: |
|
channel = chan |
|
elif 9 < chan < 15: |
|
channel = chan+1 |
|
elif chan == 15: |
|
channel = 15 |
|
elif chan == 16: |
|
channel = 9 |
|
|
|
pitch = (ss-256) % 128 |
|
|
|
if 2432 <= ss < 2440: |
|
|
|
vel = (((ss-2432)+1) * 15)-1 |
|
|
|
song_f.append(['note', time, dur, channel, pitch, vel, chan*8 ]) |
|
|
|
fn1 = "Text-to-Music-Transformer-Composition" |
|
|
|
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, |
|
output_signature = 'Text-to-Music Transformer', |
|
output_file_name = fn1, |
|
track_name='Project Los Angeles', |
|
list_of_MIDI_patches=patches |
|
) |
|
|
|
new_fn = fn1+'.mid' |
|
|
|
|
|
audio = midi_to_colab_audio(new_fn, |
|
soundfont_path=soundfont, |
|
sample_rate=16000, |
|
volume_scale=10, |
|
output_for_gradio=True |
|
) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
output_midi_title = generated_song_title |
|
output_midi_summary = str(song_f[:3]) |
|
output_midi = str(new_fn) |
|
output_audio = (16000, audio) |
|
|
|
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True) |
|
|
|
print('Output MIDI file name:', output_midi) |
|
print('Output MIDI title:', output_midi_title) |
|
print('Output MIDI summary:', output_midi_summary) |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
print('-' * 70) |
|
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('-' * 70) |
|
print('Req execution time:', (reqtime.time() - start_time), 'sec') |
|
|
|
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
PDT = timezone('US/Pacific') |
|
|
|
print('=' * 70) |
|
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('=' * 70) |
|
|
|
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" |
|
|
|
app = gr.Blocks() |
|
with app: |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Descriptive Music Transformer</h1>") |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>A music transformer that describes music it generates</h1>") |
|
gr.Markdown( |
|
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Descriptive-Music-Transformer&style=flat)\n\n" |
|
"Generate music based on a title of your imagination :)\n\n" |
|
"Check out [Annotated MIDI Dataset](https://huggingface.co/datasets/asigalov61/Annotated-MIDI-Dataset) on Hugging Face!\n\n" |
|
"[Open In Colab]" |
|
"(https://colab.research.google.com/github/asigalov61/Text-to-Music-Transformer/blob/main/Text_to_Music_Transformer.ipynb)" |
|
" for faster execution and endless generation" |
|
) |
|
input_title = gr.File(label="input") |
|
|
|
run_btn = gr.Button("generate", variant="primary") |
|
|
|
gr.Markdown("## Generation results") |
|
|
|
output_midi_title = gr.Textbox(label="Generated MIDI title") |
|
output_midi_summary = gr.Textbox(label="Generated music description") |
|
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio") |
|
output_plot = gr.Plot(label="Output MIDI score plot") |
|
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) |
|
|
|
|
|
run_event = run_btn.click(GenerateMusic, [input_title], |
|
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]) |
|
|
|
app.queue().launch() |