Spaces:
Running
on
Zero
Running
on
Zero
import os.path | |
import time as reqtime | |
import datetime | |
from pytz import timezone | |
import torch | |
import spaces | |
import gradio as gr | |
import random | |
import tqdm | |
from midi_to_colab_audio import midi_to_colab_audio | |
import TMIDIX | |
import matplotlib.pyplot as plt | |
from inference import PianoTranscription | |
from config import sample_rate | |
from utilities import load_audio | |
in_space = os.getenv("SYSTEM") == "spaces" | |
# ================================================================================================= | |
def TranscribePianoAudio(input_audio): | |
print('=' * 70) | |
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
start_time = reqtime.time() | |
print('=' * 70) | |
f = input_audio.name | |
fn = os.path.basename(f) | |
fn1 = fn.split('.')[0] | |
print('-' * 70) | |
print('Input file name:', fn) | |
print('-' * 70) | |
print('Loading audio...') | |
# Load audio | |
(audio, _) = load_audio(f, sr=sample_rate, mono=True) | |
print('Done!') | |
print('-' * 70) | |
print('Loading transcriptor..') | |
# Transcriptor | |
transcriptor = PianoTranscription(device='cuda') # 'cuda' | 'cpu' | |
print('Done!') | |
print('-' * 70) | |
print('Transcribing...') | |
transcribed_dict = transcriptor.transcribe(audio, fn+'.mid') | |
print('Done!') | |
print('-' * 70) | |
#=============================================================================== | |
raw_score = TMIDIX.midi2single_track_ms_score(fn+'.mid') | |
#=============================================================================== | |
# Enhanced score notes | |
escore = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] | |
#================================================================== | |
print('=' * 70) | |
print('Number of transcribed notes:', len(escore)) | |
print('Sample trascribed MIDI events', escore[:5]) | |
print('=' * 70) | |
print('Done!') | |
print('=' * 70) | |
#=============================================================================== | |
print('Rendering results...') | |
patches = [0] * 16 | |
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(escore, | |
output_signature = 'ByteDance Solo Piano Audio to MIDI Transcription', | |
output_file_name = fn1, | |
track_name='Project Los Angeles', | |
list_of_MIDI_patches=patches | |
) | |
print('=' * 70) | |
new_fn = fn1+'.mid' | |
audio = midi_to_colab_audio(new_fn, | |
soundfont_path=soundfont, | |
sample_rate=16000, | |
volume_scale=10, | |
output_for_gradio=True | |
) | |
print('Done!') | |
print('=' * 70) | |
#======================================================== | |
output_midi_title = str(fn1) | |
output_midi_summary = str(song_f[:3]) | |
output_midi = str(new_fn) | |
output_audio = (16000, audio) | |
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True) | |
print('Output MIDI file name:', output_midi) | |
print('Output MIDI title:', output_midi_title) | |
print('Output MIDI summary:', output_midi_summary) | |
print('=' * 70) | |
#======================================================== | |
print('-' * 70) | |
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('-' * 70) | |
print('Req execution time:', (reqtime.time() - start_time), 'sec') | |
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot | |
# ================================================================================================= | |
if __name__ == "__main__": | |
PDT = timezone('US/Pacific') | |
print('=' * 70) | |
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('=' * 70) | |
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>ByteDance Solo Piano Audio to MIDI Transcription</h1>") | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Transcribe any Solo Piano WAV or MP3 audio to MIDI</h1>") | |
gr.Markdown( | |
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.ByteDance-Solo-Piano-Adio-to-MIDI-Transcription&style=flat)\n\n" | |
"This is a ByteDance Solo Piano Audio to MIDI Transcription Model\n\n" | |
"Check out [ByteDance Solo Piano Audio to MIDI Transcription](https://github.com/asigalov61/piano_transcription_inference) on GitHub!\n\n" | |
"[Open In Colab]" | |
"(https://colab.research.google.com/github/asigalov61/tegridy-tools/blob/main/tegridy-tools/notebooks/ByteDance_Piano_Transcription.ipynb)" | |
" for faster execution and endless transcription" | |
) | |
gr.Markdown("## Upload your Solo Piano WAV or MP3 audio or select a sample example audio file") | |
input_audio = gr.File(label="Input Solo Piano WAV or MP3 Audio File", file_types=[".wav", ".mp3"]) | |
run_btn = gr.Button("transcribe", variant="primary") | |
gr.Markdown("## Generation results") | |
output_midi_title = gr.Textbox(label="Output MIDI title") | |
output_midi_summary = gr.Textbox(label="Output MIDI summary") | |
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio") | |
output_plot = gr.Plot(label="Output MIDI score plot") | |
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) | |
run_event = run_btn.click(TranscribePianoAudio, [input_audio], | |
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]) | |
gr.Examples( | |
["cut_liszt.mp3" | |
], | |
[input_audio], | |
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot], | |
TranscribePianoAudio, | |
cache_examples=True, | |
) | |
app.queue().launch() |