Spaces:
Sleeping
Sleeping
# https://huggingface.co/spaces/asigalov61/Melody2Song-Seq2Seq-Music-Transformer | |
import os | |
import time as reqtime | |
import datetime | |
from pytz import timezone | |
import torch | |
import spaces | |
import gradio as gr | |
from x_transformer_1_23_2 import * | |
import random | |
import tqdm | |
from midi_to_colab_audio import midi_to_colab_audio | |
import TMIDIX | |
import matplotlib.pyplot as plt | |
in_space = os.getenv("SYSTEM") == "spaces" | |
# ================================================================================================= | |
def GenerateSong(input_melody_seed_number): | |
print('=' * 70) | |
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
start_time = reqtime.time() | |
print('Loading model...') | |
SEQ_LEN = 2560 | |
PAD_IDX = 514 | |
DEVICE = 'cuda' # 'cuda' | |
# instantiate the model | |
model = TransformerWrapper( | |
num_tokens = PAD_IDX+1, | |
max_seq_len = SEQ_LEN, | |
attn_layers = Decoder(dim = 1024, depth = 24, heads = 16, attn_flash = True) | |
) | |
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX) | |
model.to(DEVICE) | |
print('=' * 70) | |
print('Loading model checkpoint...') | |
model.load_state_dict( | |
torch.load('Melody2Song_Seq2Seq_Music_Transformer_Trained_Model_28482_steps_0.719_loss_0.7865_acc.pth', | |
map_location=DEVICE)) | |
print('=' * 70) | |
model.eval() | |
if DEVICE == 'cpu': | |
dtype = torch.bfloat16 | |
else: | |
dtype = torch.bfloat16 | |
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) | |
print('Done!') | |
print('=' * 70) | |
seed_melody = seed_melodies_data[input_melody_seed_number] | |
print('Input melody seed number:', input_melody_seed_number) | |
print('-' * 70) | |
#================================================================== | |
print('=' * 70) | |
print('Sample output events', seed_melody[:16]) | |
print('=' * 70) | |
print('Generating...') | |
x = (torch.tensor(seed_melody, dtype=torch.long, device='cuda')[None, ...]) | |
with ctx: | |
out = model.generate(x, | |
1536, | |
temperature=0.9, | |
return_prime=False, | |
verbose=False) | |
output = out[0].tolist() | |
print('=' * 70) | |
print('Done!') | |
print('=' * 70) | |
#=============================================================================== | |
print('Rendering results...') | |
print('=' * 70) | |
print('Sample INTs', output[:15]) | |
print('=' * 70) | |
out1 = output | |
if len(out1) != 0: | |
song = out1 | |
song_f = [] | |
time = 0 | |
dur = 0 | |
vel = 90 | |
pitch = 0 | |
channel = 0 | |
patches = [0] * 16 | |
patches[3] = 40 | |
for ss in song: | |
if 0 < ss < 128: | |
time += (ss * 32) | |
if 128 < ss < 256: | |
dur = (ss-128) * 32 | |
if 256 < ss < 512: | |
pitch = (ss-256) % 128 | |
channel = (ss-256) // 128 | |
if channel == 1: | |
channel = 3 | |
vel = 110 + (pitch % 12) | |
song_f.append(['note', time, dur, channel, pitch, vel, 40]) | |
else: | |
vel = 80 + (pitch % 12) | |
channel = 0 | |
song_f.append(['note', time, dur, channel, pitch, vel, 0]) | |
fn1 = "Melody2Song-Seq2Seq-Music-Transformer-Composition" | |
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, | |
output_signature = 'Melody2Song Seq2Seq Music Transformer', | |
output_file_name = fn1, | |
track_name='Project Los Angeles', | |
list_of_MIDI_patches=patches | |
) | |
new_fn = fn1+'.mid' | |
audio = midi_to_colab_audio(new_fn, | |
soundfont_path=soundfont, | |
sample_rate=16000, | |
volume_scale=10, | |
output_for_gradio=True | |
) | |
print('Done!') | |
print('=' * 70) | |
#======================================================== | |
output_midi_title = str(fn1) | |
output_midi_summary = str(song_f[:3]) | |
output_midi = str(new_fn) | |
output_audio = (16000, audio) | |
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True) | |
print('Output MIDI file name:', output_midi) | |
print('Output MIDI title:', output_midi_title) | |
print('Output MIDI summary:', output_midi_summary) | |
print('=' * 70) | |
#======================================================== | |
print('-' * 70) | |
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('-' * 70) | |
print('Req execution time:', (reqtime.time() - start_time), 'sec') | |
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot | |
# ================================================================================================= | |
if __name__ == "__main__": | |
PDT = timezone('US/Pacific') | |
print('=' * 70) | |
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('=' * 70) | |
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" | |
print('Loading seed meldoies data...') | |
seed_melodies_data = TMIDIX.Tegridy_Any_Pickle_File_Reader('Melody2Song_Seq2Seq_Music_Transformer_Seed_Melodies_Data') | |
print('=' * 70) | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Melody2Song Seq2Seq Music Transformer</h1>") | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique songs from melodies with seq2seq music transformer</h1>") | |
gr.Markdown( | |
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Melody2Song-Seq2Seq-Music-Transformer&style=flat)\n\n") | |
input_melody_seed_number = gr.Slider(0, 203664, value=0, step=1, label="Select seed melody number") | |
run_btn = gr.Button("generate", variant="primary") | |
gr.Markdown("## Generation results") | |
output_midi_title = gr.Textbox(label="Output MIDI title") | |
output_midi_summary = gr.Textbox(label="Output MIDI summary") | |
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio") | |
output_plot = gr.Plot(label="Output MIDI score plot") | |
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) | |
run_event = run_btn.click(GenerateSong, [input_melody_seed_number], | |
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]) | |
app.queue().launch() |