Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import glob | |
import os.path | |
import torch | |
import torch.nn.functional as F | |
import gradio as gr | |
from x_transformer import * | |
import tqdm | |
from midi_synthesizer import synthesis | |
import TMIDIX | |
import matplotlib.pyplot as plt | |
in_space = os.getenv("SYSTEM") == "spaces" | |
#================================================================================================= | |
def GenerateMIDI(num_tok, idrums, iinstr, progress=gr.Progress()): | |
print('=' * 70) | |
print('Req num tok', num_tok) | |
print('Req instr', iinstr) | |
print('Drums', idrums) | |
print('=' * 70) | |
if idrums: | |
drums = 3074 | |
else: | |
drums = 3073 | |
instruments_list = ["Piano", "Guitar", "Bass", "Violin", "Cello", "Harp", "Trumpet", "Sax", "Flute", 'Drums', "Choir", "Organ"] | |
first_note_instrument_number = instruments_list.index(iinstr) | |
start_tokens = [3087, drums, 3075+first_note_instrument_number] | |
print('Selected Improv sequence:') | |
print(start_tokens) | |
print('=' * 70) | |
outy = start_tokens | |
for i in progress.tqdm(range(num_tok)): | |
inp = torch.LongTensor([outy]).cpu() | |
out = model.module.generate(inp, | |
1, | |
temperature=0.9, | |
return_prime=False, | |
verbose=False) | |
out0 = out[0].tolist() | |
outy.extend(out0) | |
melody_chords_f = outy | |
print('Sample INTs', melody_chords_f[:12]) | |
print('=' * 70) | |
if len(melody_chords_f) != 0: | |
song = melody_chords_f | |
song_f = [] | |
time = 0 | |
dur = 0 | |
vel = 0 | |
pitch = 0 | |
channel = 0 | |
for ss in song: | |
ss1 = int(ss) | |
if ss1 > 0 and ss1 < 256: | |
time += ss1 * 8 | |
if ss1 >= 256 and ss1 < 1280: | |
dur = ((ss1-256) // 8) * 32 | |
vel = (((ss1-256) % 8)+1) * 15 | |
if ss1 >= 1280 and ss1 < 2816: | |
channel = (ss1-1280) // 128 | |
pitch = (ss1-1280) % 128 | |
song_f.append(['note', int(time), int(dur), int(channel), int(pitch), int(vel) ]) | |
output_signature = 'Allegro Music Transformer' | |
output_file_name = 'Allegro-Music-Transformer-Music-Composition' | |
track_name='Project Los Angeles' | |
list_of_MIDI_patches=[0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0] | |
number_of_ticks_per_quarter=500 | |
text_encoding='ISO-8859-1' | |
output_header = [number_of_ticks_per_quarter, | |
[['track_name', 0, bytes(output_signature, text_encoding)]]] | |
patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]], | |
['patch_change', 0, 1, list_of_MIDI_patches[1]], | |
['patch_change', 0, 2, list_of_MIDI_patches[2]], | |
['patch_change', 0, 3, list_of_MIDI_patches[3]], | |
['patch_change', 0, 4, list_of_MIDI_patches[4]], | |
['patch_change', 0, 5, list_of_MIDI_patches[5]], | |
['patch_change', 0, 6, list_of_MIDI_patches[6]], | |
['patch_change', 0, 7, list_of_MIDI_patches[7]], | |
['patch_change', 0, 8, list_of_MIDI_patches[8]], | |
['patch_change', 0, 9, list_of_MIDI_patches[9]], | |
['patch_change', 0, 10, list_of_MIDI_patches[10]], | |
['patch_change', 0, 11, list_of_MIDI_patches[11]], | |
['patch_change', 0, 12, list_of_MIDI_patches[12]], | |
['patch_change', 0, 13, list_of_MIDI_patches[13]], | |
['patch_change', 0, 14, list_of_MIDI_patches[14]], | |
['patch_change', 0, 15, list_of_MIDI_patches[15]], | |
['track_name', 0, bytes(track_name, text_encoding)]] | |
output = output_header + [patch_list + song_f] | |
midi_data = TMIDIX.score2midi(output, text_encoding) | |
with open(f"Allegro-Music-Transformer-Music-Composition.mid", 'wb') as f: | |
f.write(midi_data) | |
output1 = [] | |
itrack = 1 | |
opus = TMIDIX.score2opus(output) | |
while itrack < len(opus): | |
for event in opus[itrack]: | |
if (event[0] == 'note_on') or (event[0] == 'note_off'): | |
output1.append(event) | |
itrack += 1 | |
audio = synthesis([500, output1], 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2') | |
x = [] | |
y =[] | |
c = [] | |
colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver'] | |
for s in song_f: | |
x.append(s[1] / 1000) | |
y.append(s[4]) | |
c.append(colors[s[3]]) | |
plt.figure(figsize=(14,5)) | |
ax=plt.axes(title='Allegro Music Transformer Composition') | |
ax.set_facecolor('black') | |
plt.scatter(x,y, c=c) | |
plt.xlabel("Time") | |
plt.ylabel("Pitch") | |
yield [500, output1], plt, "Allegro-Music-Transformer-Music-Composition.mid", (44100, audio) | |
#================================================================================================= | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") | |
parser.add_argument("--port", type=int, default=7860, help="gradio server port") | |
opt = parser.parse_args() | |
print('Loading model...') | |
SEQ_LEN = 2048 | |
# instantiate the model | |
model = TransformerWrapper( | |
num_tokens = 3088, | |
max_seq_len = SEQ_LEN, | |
attn_layers = Decoder(dim = 1024, depth = 32, heads = 8) | |
) | |
model = AutoregressiveWrapper(model) | |
model = torch.nn.DataParallel(model) | |
model.cpu() | |
print('=' * 70) | |
print('Loading model checkpoint...') | |
model.load_state_dict(torch.load('Allegro_Music_Transformer_Small_Trained_Model_56000_steps_0.9399_loss_0.7374_acc.pth', map_location='cpu')) | |
print('=' * 70) | |
model.eval() | |
print('Done!') | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Allegro Music Transformer</h1>") | |
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Allegro-Music-Transformer&style=flat)\n\n" | |
"Full-attention multi-instrumental music transformer featuring asymmetrical encoding with octo-velocity, and chords counters tokens, optimized for speed and performance\n\n" | |
"Check out [Allegro Music Transformer](https://github.com/asigalov61/Allegro-Music-Transformer) on GitHub!\n\n" | |
"[Open In Colab]" | |
"(https://colab.research.google.com/github/asigalov61/Allegro-Music-Transformer/blob/main/Allegro_Music_Transformer_Composer.ipynb)" | |
" for faster execution and endless generation" | |
) | |
input_drums = gr.Checkbox(label="Drums Controls", value = False, info="Drums present or not") | |
input_instrument = gr.Radio(["Piano", "Guitar", "Bass", "Violin", "Cello", "Harp", "Trumpet", "Sax", "Flute", "Choir", "Organ"], value="Piano", label="Lead Instrument Controls", info="Desired lead instrument") | |
input_num_tokens = gr.Slider(16, 512, value=256, label="Number of Tokens", info="Number of tokens to generate") | |
run_btn = gr.Button("generate", variant="primary") | |
output_midi_seq = gr.Variable() | |
output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio") | |
output_plot = gr.Plot(label="output plot") | |
output_midi = gr.File(label="output midi", file_types=[".mid"]) | |
run_event = run_btn.click(GenerateMIDI, [input_num_tokens, input_drums, input_instrument], [output_midi_seq, output_plot, output_midi, output_audio]) | |
plt.close() | |
app.queue(concurrency_count=1).launch(server_port=opt.port, share=opt.share, inbrowser=True) |