asigalov61's picture
Update app.py
0ccc4f3 verified
raw
history blame
7.86 kB
import os.path
import time
import datetime
from pytz import timezone
import torch
import torch.nn.functional as F
import gradio as gr
import spaces
from x_transformer import *
import tqdm
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
import matplotlib.pyplot as plt
in_space = os.getenv("SYSTEM") == "spaces"
# =================================================================================================
@spaces.GPU
def GenerateMIDI(num_tok, idrums, iinstr):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = time.time()
print('-' * 70)
print('Req num tok:', num_tok)
print('Req instr:', iinstr)
print('Drums:', idrums)
print('-' * 70)
if idrums:
drums = 3074
else:
drums = 3073
instruments_list = ["Piano", "Guitar", "Bass", "Violin", "Cello", "Harp", "Trumpet", "Sax", "Flute", 'Drums',
"Choir", "Organ"]
first_note_instrument_number = instruments_list.index(iinstr)
start_tokens = [3087, drums, 3075 + first_note_instrument_number]
print('Selected Improv sequence:')
print(start_tokens)
print('-' * 70)
output_signature = 'Allegro Music Transformer'
output_file_name = 'Allegro-Music-Transformer-Music-Composition'
track_name = 'Project Los Angeles'
list_of_MIDI_patches = [0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0]
number_of_ticks_per_quarter = 500
text_encoding = 'ISO-8859-1'
output_header = [number_of_ticks_per_quarter,
[['track_name', 0, bytes(output_signature, text_encoding)]]]
patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]],
['patch_change', 0, 1, list_of_MIDI_patches[1]],
['patch_change', 0, 2, list_of_MIDI_patches[2]],
['patch_change', 0, 3, list_of_MIDI_patches[3]],
['patch_change', 0, 4, list_of_MIDI_patches[4]],
['patch_change', 0, 5, list_of_MIDI_patches[5]],
['patch_change', 0, 6, list_of_MIDI_patches[6]],
['patch_change', 0, 7, list_of_MIDI_patches[7]],
['patch_change', 0, 8, list_of_MIDI_patches[8]],
['patch_change', 0, 9, list_of_MIDI_patches[9]],
['patch_change', 0, 10, list_of_MIDI_patches[10]],
['patch_change', 0, 11, list_of_MIDI_patches[11]],
['patch_change', 0, 12, list_of_MIDI_patches[12]],
['patch_change', 0, 13, list_of_MIDI_patches[13]],
['patch_change', 0, 14, list_of_MIDI_patches[14]],
['patch_change', 0, 15, list_of_MIDI_patches[15]],
['track_name', 0, bytes(track_name, text_encoding)]]
output = output_header + [patch_list]
print('Loading model...')
SEQ_LEN = 2048
# instantiate the model
model = TransformerWrapper(
num_tokens=3088,
max_seq_len=SEQ_LEN,
attn_layers=Decoder(dim=1024, depth=32, heads=8, attn_flash=True)
)
model = AutoregressiveWrapper(model)
model = torch.nn.DataParallel(model)
model.cuda()
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Allegro_Music_Transformer_Small_Trained_Model_56000_steps_0.9399_loss_0.7374_acc.pth',
map_location='cuda'))
print('=' * 70)
model.eval()
print('Done!')
print('=' * 70)
inp = torch.LongTensor([start_tokens]).cuda()
with torch.amp.autocast(device_type='cuda', dtype=torch.bfloat16):
with torch.inference_mode():
out = model.module.generate(inp,
max(1, min(1024, num_tok)),
temperature=0.9,
return_prime=False,
verbose=False)
out0 = out[0].tolist()
ctime = 0
dur = 0
vel = 90
pitch = 0
channel = 0
for ss1 in out0:
if 0 < ss1 < 256:
ctime += ss1 * 8
if 256 <= ss1 < 1280:
dur = ((ss1 - 256) // 8) * 32
vel = (((ss1 - 256) % 8) + 1) * 15
if 1280 <= ss1 < 2816:
channel = (ss1 - 1280) // 128
pitch = (ss1 - 1280) % 128
if channel != 9:
pat = list_of_MIDI_patches[channel]
else:
pat = 128
event = ['note', ctime, dur, channel, pitch, vel, pat]
output[-1].append(event)
midi_data = TMIDIX.score2midi(output, text_encoding)
with open(f"Allegro-Music-Transformer-Composition.mid", 'wb') as f:
f.write(midi_data)
output_plot = TMIDIX.plot_ms_SONG(output[2], plot_title='Allegro-Music-Transformer-Composition', return_plt=True)
audio = midi_to_colab_audio('Allegro-Music-Transformer-Composition.mid',
soundfont_path="SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2",
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('First generated MIDI events', output[2][:3])
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (time.time() - start_time), 'sec')
return output_plot, "Allegro-Music-Transformer-Composition.mid", (16000, audio)
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Allegro Music Transformer</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Allegro-Music-Transformer&style=flat)\n\n"
"Full-attention multi-instrumental music transformer featuring asymmetrical encoding with octo-velocity, and chords counters tokens, optimized for speed and performance\n\n"
"Check out [Allegro Music Transformer](https://github.com/asigalov61/Allegro-Music-Transformer) on GitHub!\n\n"
"Special thanks go out to [SkyTNT](https://github.com/SkyTNT/midi-model) for fantastic FluidSynth Synthesizer and MIDI Visualizer code\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/Allegro-Music-Transformer/blob/main/Allegro_Music_Transformer_Composer.ipynb)"
" for faster execution and endless generation"
)
input_instrument = gr.Radio(
["Piano", "Guitar", "Bass", "Violin", "Cello", "Harp", "Trumpet", "Sax", "Flute", "Choir", "Organ"],
value="Piano", label="Lead Instrument Controls", info="Desired lead instrument")
input_drums = gr.Checkbox(label="Add Drums", value=False, info="Add drums to the composition")
input_num_tokens = gr.Slider(16, 1024, value=512, label="Number of Tokens", info="Number of tokens to generate")
run_btn = gr.Button("generate", variant="primary")
output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio")
output_plot = gr.Plot(label='output plot')
output_midi = gr.File(label="output midi", file_types=[".mid"])
run_event = run_btn.click(GenerateMIDI, [input_num_tokens, input_drums, input_instrument],
[output_plot, output_midi, output_audio])
app.queue().launch()