Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,37 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import VisionEncoderDecoderModel,
|
3 |
import torch
|
4 |
from PIL import Image
|
|
|
5 |
|
6 |
-
# Load
|
7 |
model = VisionEncoderDecoderModel.from_pretrained("ashok2216/vit-gpt2-image-captioning_COCO_FineTuned")
|
8 |
-
# processor = ViTImageProcessor.from_pretrained("ashok2216/vit-gpt2-image-captioning_COCO_FineTuned")
|
9 |
-
processor = AutoImageProcessor.from_pretrained("ashok2216/vit-gpt2-image-captioning_COCO_FineTuned")
|
10 |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
# File uploader for image input
|
17 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
18 |
|
19 |
if uploaded_file is not None:
|
20 |
-
# Load and display the uploaded image
|
21 |
image = Image.open(uploaded_file)
|
22 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
23 |
|
24 |
-
# Preprocess the image
|
25 |
-
inputs =
|
26 |
-
pixel_values = inputs.pixel_values
|
27 |
|
28 |
# Generate the caption
|
29 |
with st.spinner("Generating caption..."):
|
30 |
-
output = model.generate(
|
31 |
caption = tokenizer.decode(output[0], skip_special_tokens=True)
|
32 |
|
33 |
-
# Display the generated caption
|
34 |
st.success("Generated Caption:")
|
35 |
st.write(caption)
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import VisionEncoderDecoderModel, GPT2Tokenizer
|
3 |
import torch
|
4 |
from PIL import Image
|
5 |
+
from torchvision import transforms
|
6 |
|
7 |
+
# Load model and tokenizer
|
8 |
model = VisionEncoderDecoderModel.from_pretrained("ashok2216/vit-gpt2-image-captioning_COCO_FineTuned")
|
|
|
|
|
9 |
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
10 |
|
11 |
+
# Define manual preprocessing
|
12 |
+
preprocess = transforms.Compose([
|
13 |
+
transforms.Resize((224, 224)),
|
14 |
+
transforms.ToTensor(),
|
15 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
16 |
+
])
|
17 |
+
|
18 |
+
# Streamlit app setup
|
19 |
+
st.title("Image Captioning with ViT-GPT2")
|
20 |
+
st.write("Upload an image to generate a caption.")
|
21 |
|
|
|
22 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
23 |
|
24 |
if uploaded_file is not None:
|
|
|
25 |
image = Image.open(uploaded_file)
|
26 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
27 |
|
28 |
+
# Preprocess the image manually
|
29 |
+
inputs = preprocess(image).unsqueeze(0) # Add batch dimension
|
|
|
30 |
|
31 |
# Generate the caption
|
32 |
with st.spinner("Generating caption..."):
|
33 |
+
output = model.generate(inputs)
|
34 |
caption = tokenizer.decode(output[0], skip_special_tokens=True)
|
35 |
|
|
|
36 |
st.success("Generated Caption:")
|
37 |
st.write(caption)
|