Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,86 +1,109 @@
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
# Initialize the InferenceClient
|
| 5 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 6 |
|
| 7 |
# Streamlit app configuration
|
| 8 |
-
st.set_page_config(page_title="
|
| 9 |
-
st.title("
|
| 10 |
-
|
| 11 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
if 'messages' not in st.session_state:
|
| 13 |
st.session_state.messages = [
|
| 14 |
-
{"role": "system", "content": "You are a
|
| 15 |
]
|
| 16 |
|
| 17 |
-
|
| 18 |
-
# Prepare the list of messages for the chat completion
|
| 19 |
-
messages = [{"role": "system", "content": st.session_state.messages[0]["content"]}]
|
| 20 |
-
|
| 21 |
-
for val in history:
|
| 22 |
-
if val["role"] == "user":
|
| 23 |
-
messages.append({"role": "user", "content": val["content"]})
|
| 24 |
-
elif val["role"] == "assistant":
|
| 25 |
-
messages.append({"role": "assistant", "content": val["content"]})
|
| 26 |
-
|
| 27 |
-
messages.append({"role": "user", "content": message})
|
| 28 |
-
|
| 29 |
-
# Generate response
|
| 30 |
-
response = ""
|
| 31 |
-
response_container = st.empty() # Placeholder to update the response text dynamically
|
| 32 |
-
|
| 33 |
-
for message in client.chat_completion(
|
| 34 |
-
messages,
|
| 35 |
-
max_tokens=max_tokens,
|
| 36 |
-
stream=True,
|
| 37 |
-
temperature=temperature,
|
| 38 |
-
top_p=top_p,
|
| 39 |
-
):
|
| 40 |
-
token = message.choices[0].delta.content
|
| 41 |
-
response += token
|
| 42 |
-
response_container.text(response) # Stream the response
|
| 43 |
-
|
| 44 |
-
return response
|
| 45 |
-
|
| 46 |
-
# Sidebar for parameters
|
| 47 |
-
with st.sidebar:
|
| 48 |
-
max_tokens = st.slider("Max new tokens", 1, 2048, 512)
|
| 49 |
-
temperature = st.slider("Temperature", 0.1, 4.0, 0.7)
|
| 50 |
-
top_p = st.slider("Top-p (nucleus sampling)", 0.1, 1.0, 0.95)
|
| 51 |
-
|
| 52 |
-
# Display chat messages from history
|
| 53 |
for message in st.session_state.messages:
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
st.write(message["content"])
|
| 69 |
-
with col2:
|
| 70 |
-
st.write("") # Empty space on the right for alignment
|
| 71 |
-
|
| 72 |
-
# Keep user input box at the bottom
|
| 73 |
-
st.divider() # Optional, to visually separate chat history from input box
|
| 74 |
-
user_input = st.text_input("You:", key="user_message", placeholder="Type your message here...")
|
| 75 |
-
|
| 76 |
-
if user_input:
|
| 77 |
-
# Append user message to the chat history
|
| 78 |
st.session_state.messages.append({"role": "user", "content": user_input})
|
| 79 |
|
| 80 |
-
# Generate assistant response
|
| 81 |
-
response =
|
|
|
|
|
|
|
| 82 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 83 |
-
|
| 84 |
-
# Refresh to display new messages
|
| 85 |
-
st.experimental_rerun()
|
| 86 |
-
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
import streamlit as st
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 5 |
+
from huggingface_hub import login
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# Streamlit app configuration
|
| 8 |
+
st.set_page_config(page_title="Medical Chatbot", layout="wide")
|
| 9 |
+
st.title("Medical Chatbot")
|
| 10 |
+
|
| 11 |
+
# Get the token from the environment variable
|
| 12 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 13 |
+
if hf_token is None:
|
| 14 |
+
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
| 15 |
+
|
| 16 |
+
# Authenticate with Hugging Face
|
| 17 |
+
login(hf_token)
|
| 18 |
+
|
| 19 |
+
# Set the random seed for reproducibility
|
| 20 |
+
torch.manual_seed(0)
|
| 21 |
+
|
| 22 |
+
# Supported models
|
| 23 |
+
model_links = {
|
| 24 |
+
"Phi-3-mini-128k-instruct": "microsoft/Phi-3-mini-128k-instruct",
|
| 25 |
+
"Mistral-7B": "mistralai/Mistral-7B-Instruct-v0.2",
|
| 26 |
+
"Zephyr-7B": "HuggingFaceH4/zephyr-7b-beta"
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
model_info = {
|
| 30 |
+
"Phi-3-mini-128k-instruct": {
|
| 31 |
+
'description': """Phi-3-mini-128k-instruct is a large language model from Microsoft for health-related interactions.
|
| 32 |
+
It has been optimized for instruct-based queries.""",
|
| 33 |
+
'logo': 'https://upload.wikimedia.org/wikipedia/commons/thumb/a/a6/Microsoft_logo_%282012%29.svg/200px-Microsoft_logo_%282012%29.svg.png'
|
| 34 |
+
},
|
| 35 |
+
"Mistral-7B": {
|
| 36 |
+
'description': """Mistral 7B is a large language model from Mistral AI optimized for Q&A tasks.""",
|
| 37 |
+
'logo': 'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'
|
| 38 |
+
},
|
| 39 |
+
"Zephyr-7B": {
|
| 40 |
+
'description': """Zephyr 7B is a Huggingface model, fine-tuned for helpful and instructive interactions.""",
|
| 41 |
+
'logo': 'https://huggingface.co/HuggingFaceH4/zephyr-7b-gemma-v0.1/resolve/main/thumbnail.png'
|
| 42 |
+
}
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
# Sidebar for model selection and parameters
|
| 46 |
+
selected_model = st.sidebar.selectbox("Select Model", model_links.keys())
|
| 47 |
+
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
| 48 |
+
st.sidebar.markdown(model_info[selected_model]['description'])
|
| 49 |
+
st.sidebar.image(model_info[selected_model]['logo'])
|
| 50 |
+
|
| 51 |
+
# Temperature slider
|
| 52 |
+
temperature = st.sidebar.slider('Temperature', 0.1, 1.0, 0.7)
|
| 53 |
+
|
| 54 |
+
# Reset conversation button
|
| 55 |
+
def reset_conversation():
|
| 56 |
+
st.session_state.messages = []
|
| 57 |
+
st.session_state.model = selected_model
|
| 58 |
+
|
| 59 |
+
st.sidebar.button('Reset Chat', on_click=reset_conversation)
|
| 60 |
+
|
| 61 |
+
# Load model and tokenizer only if it's not already loaded
|
| 62 |
+
if 'model' not in st.session_state or st.session_state.model != selected_model:
|
| 63 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 64 |
+
model_links[selected_model],
|
| 65 |
+
device_map="auto",
|
| 66 |
+
torch_dtype="auto",
|
| 67 |
+
trust_remote_code=True
|
| 68 |
+
)
|
| 69 |
+
tokenizer = AutoTokenizer.from_pretrained(model_links[selected_model])
|
| 70 |
+
|
| 71 |
+
# Initialize the text generation pipeline
|
| 72 |
+
pipe = pipeline(
|
| 73 |
+
"text-generation",
|
| 74 |
+
model=model,
|
| 75 |
+
tokenizer=tokenizer
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
st.session_state.model = selected_model
|
| 79 |
+
st.session_state.pipe = pipe
|
| 80 |
+
|
| 81 |
+
# Initialize chat messages
|
| 82 |
if 'messages' not in st.session_state:
|
| 83 |
st.session_state.messages = [
|
| 84 |
+
{"role": "system", "content": "You are a medical chatbot. You should only respond to health questions!"}
|
| 85 |
]
|
| 86 |
|
| 87 |
+
# Display chat history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
for message in st.session_state.messages:
|
| 89 |
+
with st.chat_message(message["role"]):
|
| 90 |
+
st.markdown(message["content"])
|
| 91 |
+
|
| 92 |
+
# Function to generate responses
|
| 93 |
+
def generate_response(messages):
|
| 94 |
+
messages_str = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages if msg['role'] != 'system'])
|
| 95 |
+
output = st.session_state.pipe(messages_str, max_new_tokens=150, temperature=temperature, return_full_text=False)
|
| 96 |
+
return output[0]['generated_text']
|
| 97 |
+
|
| 98 |
+
# User input
|
| 99 |
+
if user_input := st.chat_input("Ask a health question..."):
|
| 100 |
+
# Display user message
|
| 101 |
+
with st.chat_message("user"):
|
| 102 |
+
st.markdown(user_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
st.session_state.messages.append({"role": "user", "content": user_input})
|
| 104 |
|
| 105 |
+
# Generate and display assistant response
|
| 106 |
+
response = generate_response(st.session_state.messages)
|
| 107 |
+
with st.chat_message("assistant"):
|
| 108 |
+
st.markdown(response)
|
| 109 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
|
|
|
|
|
|
|
|
|