|
import os
|
|
import numpy as np
|
|
import warnings
|
|
import librosa
|
|
import streamlit as st
|
|
import tempfile
|
|
import json
|
|
from PIL import Image
|
|
import pandas as pd
|
|
from joblib import dump, load
|
|
import wikipedia
|
|
import requests
|
|
|
|
from sklearn.preprocessing import LabelEncoder
|
|
from tensorflow.keras.models import load_model
|
|
|
|
from audio_analysis import audio_signals
|
|
from audio_processing import extract_features
|
|
import os
|
|
from dotenv import load_dotenv
|
|
import json
|
|
import streamlit as st
|
|
from huggingface_hub import InferenceApi, login, InferenceClient
|
|
|
|
|
|
st.set_page_config(
|
|
page_title="BirdSense",
|
|
page_icon=":bird:",
|
|
initial_sidebar_state="expanded",
|
|
menu_items={
|
|
'Get Help': 'https://ashok2216-myportfolio-github-io.vercel.app/#contact',
|
|
'Report a bug': "https://ashok2216-myportfolio-github-io.vercel.app/#contact",
|
|
'About': "https://ashok2216-myportfolio-github-io.vercel.app/"
|
|
}
|
|
)
|
|
|
|
|
|
load_dotenv()
|
|
hf_token = os.getenv("HF_TOKEN")
|
|
if hf_token is None:
|
|
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
|
|
|
login(hf_token)
|
|
|
|
|
|
model_links = {
|
|
"Zephyr-7B": "HuggingFaceH4/zephyr-7b-beta"
|
|
}
|
|
model_info = {
|
|
"Zephyr-7B": {
|
|
'description': """Zephyr 7B is a Huggingface model, fine-tuned for helpful and instructive interactions.""",
|
|
'logo': 'https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png'
|
|
}
|
|
}
|
|
|
|
|
|
client = InferenceClient('HuggingFaceH4/zephyr-7b-beta')
|
|
|
|
|
|
def reset_conversation():
|
|
return [
|
|
{"role": "system", "content": "You are a knowledgeable and empathetic ornithologist assistant providing accurate and relevant information based on user input."}
|
|
]
|
|
|
|
|
|
messages = reset_conversation()
|
|
|
|
|
|
for message in messages:
|
|
with st.chat_message(message["role"]):
|
|
st.markdown(message["content"])
|
|
|
|
def respond(message, history, max_tokens, temperature, top_p):
|
|
|
|
messages = [{"role": "system", "content": history[0]["content"]}]
|
|
|
|
for val in history:
|
|
if val["role"] == "user":
|
|
messages.append({"role": "user", "content": val["content"]})
|
|
elif val["role"] == "assistant":
|
|
messages.append({"role": "assistant", "content": val["content"]})
|
|
|
|
messages.append({"role": "user", "content": message})
|
|
|
|
|
|
response = ""
|
|
response_container = st.empty()
|
|
|
|
for message in client.chat_completion(
|
|
messages,
|
|
max_tokens=max_tokens,
|
|
stream=True,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
):
|
|
token = message.choices[0].delta.content
|
|
response += token
|
|
|
|
|
|
return response
|
|
|
|
load_dotenv()
|
|
hf_token = os.getenv("HF_TOKEN")
|
|
if hf_token is None:
|
|
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
|
|
|
login(hf_token)
|
|
|
|
image = Image.open('logo.PNG')
|
|
st.image(
|
|
image, width=250
|
|
)
|
|
st.subheader('Bird Species Classification')
|
|
|
|
st.header('', divider='rainbow')
|
|
|
|
@st.cache_data
|
|
def loaded_model(model_path):
|
|
return load_model(model_path)
|
|
|
|
@st.cache_data
|
|
def predict_class(audio_path, model):
|
|
extracted_feature = extract_features(audio_path)
|
|
extracted_feature = extracted_feature.reshape(1, 1, extracted_feature.shape[0])
|
|
prediction = model.predict(extracted_feature)
|
|
predicted_class_index = np.argmax(prediction)
|
|
print('HI',predicted_class_index)
|
|
|
|
return predicted_class_index
|
|
|
|
|
|
audio_file = st.file_uploader("Upload an Audio file", type=["mp3", "wav", "ogg"], accept_multiple_files=False)
|
|
|
|
model_path = 'bird_audio_classification_model.h5'
|
|
model = loaded_model(model_path)
|
|
|
|
class_file = open('classes.json', 'r').read()
|
|
labels_list = json.loads(class_file)
|
|
|
|
st.markdown('Download the Sample Audio here :point_down:')
|
|
st.page_link("https://dibird.com/", label="DiBird.com", icon="π¦")
|
|
st.subheader('Scientific Name of 114 Birds Species :bird:')
|
|
|
|
with st.container(height=300):
|
|
st.markdown(list(labels_list.values()))
|
|
|
|
|
|
st.header('', divider='rainbow')
|
|
|
|
if audio_file is not None:
|
|
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
|
tmp_file.write(audio_file.read())
|
|
st.success("Audio file successfully uploaded and stored temporally.")
|
|
file_path = tmp_file.name
|
|
audio_data, sampling_rate = librosa.load(file_path)
|
|
st.audio(audio_data, sample_rate=sampling_rate)
|
|
audio_signals(file_path)
|
|
|
|
y_predict = predict_class(file_path, model)
|
|
|
|
if str(y_predict) in labels_list.keys():
|
|
pred = labels_list[str(y_predict)][:-6]
|
|
st.subheader(f'Predicted Class: :rainbow[{pred}]')
|
|
st.image(wikipedia.page(pred).images[0], caption=labels_list[str(y_predict)][:-6], width=200)
|
|
st.markdown(wikipedia.summary(pred))
|
|
|
|
user_input = f"Explain about {pred} bird"
|
|
|
|
if user_input:
|
|
response = respond(user_input, messages, max_tokens = 500, temperature = 0.70, top_p = 0.95)
|
|
st.markdown(response)
|
|
messages.append({"role": "assistant", "content": response})
|
|
st.page_link(wikipedia.page(pred).url, label="Explore more in Wikipedia.com", icon="π")
|
|
|
|
else:
|
|
st.write('Class not Found')
|
|
else:
|
|
st.markdown('File not Found!')
|
|
|
|
|