Spaces:
Runtime error
Runtime error
Commit
·
8bb7965
1
Parent(s):
356e503
optimize app
Browse files- .gitignore +3 -3
- app.py +33 -40
- sentiment_model_dir/config.json +34 -0
- sentiment_model_dir/special_tokens_map.json +1 -0
- sentiment_model_dir/tokenizer.json +0 -0
- sentiment_model_dir/tokenizer_config.json +1 -0
- sentiment_model_dir/vocab.txt +0 -0
- zs_model_dir/config.json +58 -0
- zs_model_dir/merges.txt +0 -0
- zs_model_dir/special_tokens_map.json +1 -0
- zs_model_dir/tokenizer.json +0 -0
- zs_model_dir/tokenizer_config.json +1 -0
- zs_model_dir/vocab.json +0 -0
.gitignore
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
venv/
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
zs_model_dir/
|
| 5 |
#sent_clf_onnx_dir/
|
| 6 |
#zs_onnx_dir/
|
|
|
|
| 1 |
venv/
|
| 2 |
+
#exclude model files as they are large
|
| 3 |
+
sentiment_model_dir/pytorch_model.bin
|
| 4 |
+
zs_model_dir/pytorch_model.bin
|
| 5 |
#sent_clf_onnx_dir/
|
| 6 |
#zs_onnx_dir/
|
app.py
CHANGED
|
@@ -103,10 +103,12 @@ def create_model_dir(chkpt, model_dir):
|
|
| 103 |
pass
|
| 104 |
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
|
|
|
| 108 |
with st.sidebar:
|
| 109 |
-
|
|
|
|
| 110 |
select_task=st.selectbox(label="Select task from drop down menu",
|
| 111 |
options=['README',
|
| 112 |
'Detect Sentiment','Zero Shot Classification'])
|
|
@@ -114,7 +116,7 @@ with st.sidebar:
|
|
| 114 |
############### Pre-Download & instantiate objects for sentiment analysis *********************** START **********************
|
| 115 |
|
| 116 |
# #create model/token dir for sentiment classification for faster inference
|
| 117 |
-
|
| 118 |
|
| 119 |
|
| 120 |
@st.cache(allow_output_mutation=True, suppress_st_warning=True, max_entries=None, ttl=None)
|
|
@@ -125,26 +127,26 @@ def sentiment_task_selected(task,
|
|
| 125 |
sent_onnx_mdl_name=sent_onnx_mdl_name,
|
| 126 |
sent_onnx_quant_mdl_name=sent_onnx_quant_mdl_name):
|
| 127 |
#model & tokenizer initialization for normal sentiment classification
|
| 128 |
-
model_sentiment=AutoModelForSequenceClassification.from_pretrained(sent_chkpt)
|
| 129 |
-
tokenizer_sentiment=AutoTokenizer.from_pretrained(sent_chkpt)
|
|
|
|
| 130 |
|
| 131 |
-
# create onnx model for sentiment classification
|
| 132 |
-
create_onnx_model_sentiment(_model=model_sentiment, _tokenizer=tokenizer_sentiment)
|
| 133 |
|
| 134 |
#create inference session
|
| 135 |
sentiment_session = ort.InferenceSession(f"{sent_onnx_mdl_dir}/{sent_onnx_mdl_name}")
|
| 136 |
# sentiment_session_quant = ort.InferenceSession(f"{sent_onnx_mdl_dir}/{sent_onnx_quant_mdl_name}")
|
| 137 |
|
| 138 |
-
return
|
| 139 |
|
| 140 |
############## Pre-Download & instantiate objects for sentiment analysis ********************* END **********************************
|
| 141 |
|
| 142 |
|
| 143 |
############### Pre-Download & instantiate objects for Zero shot clf *********************** START **********************
|
| 144 |
|
| 145 |
-
#
|
| 146 |
-
|
| 147 |
-
|
| 148 |
|
| 149 |
@st.cache(allow_output_mutation=True, suppress_st_warning=True, max_entries=None, ttl=None)
|
| 150 |
def zs_task_selected(task,
|
|
@@ -157,10 +159,11 @@ def zs_task_selected(task,
|
|
| 157 |
##model & tokenizer initialization for normal ZS classification
|
| 158 |
# model_zs=AutoModelForSequenceClassification.from_pretrained(zs_chkpt)
|
| 159 |
# we just need tokenizer for inference and not model since onnx model is already saved
|
| 160 |
-
tokenizer_zs=AutoTokenizer.from_pretrained(zs_chkpt)
|
|
|
|
| 161 |
|
| 162 |
-
# create onnx model for zeroshot
|
| 163 |
-
create_onnx_model_zs()
|
| 164 |
|
| 165 |
#create inference session from onnx model
|
| 166 |
zs_session = ort.InferenceSession(f"{zs_onnx_mdl_dir}/{zs_onnx_mdl_name}")
|
|
@@ -172,11 +175,11 @@ def zs_task_selected(task,
|
|
| 172 |
|
| 173 |
if select_task=='README':
|
| 174 |
st.header("NLP Summary")
|
|
|
|
| 175 |
|
| 176 |
if select_task == 'Detect Sentiment':
|
| 177 |
t1=time.time()
|
| 178 |
-
|
| 179 |
-
sentiment_session = sentiment_task_selected(task=select_task)
|
| 180 |
t2 = time.time()
|
| 181 |
st.write(f"Total time to load Model is {(t2-t1)*1000:.1f} ms")
|
| 182 |
|
|
@@ -185,28 +188,16 @@ if select_task == 'Detect Sentiment':
|
|
| 185 |
c1,c2,_,_=st.columns(4)
|
| 186 |
|
| 187 |
with c1:
|
| 188 |
-
response1=st.button("
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
)
|
| 199 |
-
end=time.time()
|
| 200 |
-
st.write(f"Time taken for computation {(end-start)*1000:.1f} ms")
|
| 201 |
-
elif response2:
|
| 202 |
-
start = time.time()
|
| 203 |
-
sentiments=classify_sentiment_onnx(input_texts,
|
| 204 |
-
_session=sentiment_session,
|
| 205 |
-
_tokenizer=tokenizer_sentiment)
|
| 206 |
-
end = time.time()
|
| 207 |
-
st.write(f"Time taken for computation {(end - start) * 1000:.1f} ms")
|
| 208 |
-
else:
|
| 209 |
-
pass
|
| 210 |
for i,t in enumerate(input_texts.split(',')):
|
| 211 |
if sentiments[i]=='Positive':
|
| 212 |
response=st_text_rater(t + f"--> This statement is {sentiments[i]}",
|
|
@@ -214,6 +205,8 @@ if select_task == 'Detect Sentiment':
|
|
| 214 |
else:
|
| 215 |
response = st_text_rater(t + f"--> This statement is {sentiments[i]}",
|
| 216 |
color_background='rgb(233, 116, 81)',key=t)
|
|
|
|
|
|
|
| 217 |
|
| 218 |
if select_task=='Zero Shot Classification':
|
| 219 |
t1=time.time()
|
|
@@ -228,7 +221,7 @@ if select_task=='Zero Shot Classification':
|
|
| 228 |
c1,_,_,_=st.columns(4)
|
| 229 |
|
| 230 |
with c1:
|
| 231 |
-
response1=st.button("Compute
|
| 232 |
|
| 233 |
if response1:
|
| 234 |
start = time.time()
|
|
|
|
| 103 |
pass
|
| 104 |
|
| 105 |
|
| 106 |
+
#title using markdown
|
| 107 |
+
st.markdown("<h1 style='text-align: center; color: #3366ff;'>NLP Basic Use Cases</h1>", unsafe_allow_html=True)
|
| 108 |
+
st.markdown("---")
|
| 109 |
with st.sidebar:
|
| 110 |
+
# title using markdown
|
| 111 |
+
st.markdown("<h1 style='text-align: left; color: ;'>NLP Tasks</h1>", unsafe_allow_html=True)
|
| 112 |
select_task=st.selectbox(label="Select task from drop down menu",
|
| 113 |
options=['README',
|
| 114 |
'Detect Sentiment','Zero Shot Classification'])
|
|
|
|
| 116 |
############### Pre-Download & instantiate objects for sentiment analysis *********************** START **********************
|
| 117 |
|
| 118 |
# #create model/token dir for sentiment classification for faster inference
|
| 119 |
+
create_model_dir(chkpt=sent_chkpt, model_dir=sent_mdl_dir)
|
| 120 |
|
| 121 |
|
| 122 |
@st.cache(allow_output_mutation=True, suppress_st_warning=True, max_entries=None, ttl=None)
|
|
|
|
| 127 |
sent_onnx_mdl_name=sent_onnx_mdl_name,
|
| 128 |
sent_onnx_quant_mdl_name=sent_onnx_quant_mdl_name):
|
| 129 |
#model & tokenizer initialization for normal sentiment classification
|
| 130 |
+
# model_sentiment=AutoModelForSequenceClassification.from_pretrained(sent_chkpt)
|
| 131 |
+
# tokenizer_sentiment=AutoTokenizer.from_pretrained(sent_chkpt)
|
| 132 |
+
tokenizer_sentiment = AutoTokenizer.from_pretrained(sent_mdl_dir)
|
| 133 |
|
| 134 |
+
# # create onnx model for sentiment classification but once created in your local app comment this out
|
| 135 |
+
# create_onnx_model_sentiment(_model=model_sentiment, _tokenizer=tokenizer_sentiment)
|
| 136 |
|
| 137 |
#create inference session
|
| 138 |
sentiment_session = ort.InferenceSession(f"{sent_onnx_mdl_dir}/{sent_onnx_mdl_name}")
|
| 139 |
# sentiment_session_quant = ort.InferenceSession(f"{sent_onnx_mdl_dir}/{sent_onnx_quant_mdl_name}")
|
| 140 |
|
| 141 |
+
return tokenizer_sentiment,sentiment_session
|
| 142 |
|
| 143 |
############## Pre-Download & instantiate objects for sentiment analysis ********************* END **********************************
|
| 144 |
|
| 145 |
|
| 146 |
############### Pre-Download & instantiate objects for Zero shot clf *********************** START **********************
|
| 147 |
|
| 148 |
+
# create model/token dir for zeroshot clf -- already created so not required
|
| 149 |
+
create_model_dir(chkpt=zs_chkpt, model_dir=zs_mdl_dir)
|
|
|
|
| 150 |
|
| 151 |
@st.cache(allow_output_mutation=True, suppress_st_warning=True, max_entries=None, ttl=None)
|
| 152 |
def zs_task_selected(task,
|
|
|
|
| 159 |
##model & tokenizer initialization for normal ZS classification
|
| 160 |
# model_zs=AutoModelForSequenceClassification.from_pretrained(zs_chkpt)
|
| 161 |
# we just need tokenizer for inference and not model since onnx model is already saved
|
| 162 |
+
# tokenizer_zs=AutoTokenizer.from_pretrained(zs_chkpt)
|
| 163 |
+
tokenizer_zs = AutoTokenizer.from_pretrained(zs_mdl_dir)
|
| 164 |
|
| 165 |
+
# # create onnx model for zeroshot but once created locally comment it out.
|
| 166 |
+
# create_onnx_model_zs()
|
| 167 |
|
| 168 |
#create inference session from onnx model
|
| 169 |
zs_session = ort.InferenceSession(f"{zs_onnx_mdl_dir}/{zs_onnx_mdl_name}")
|
|
|
|
| 175 |
|
| 176 |
if select_task=='README':
|
| 177 |
st.header("NLP Summary")
|
| 178 |
+
# st.write()
|
| 179 |
|
| 180 |
if select_task == 'Detect Sentiment':
|
| 181 |
t1=time.time()
|
| 182 |
+
tokenizer_sentiment,sentiment_session = sentiment_task_selected(task=select_task)
|
|
|
|
| 183 |
t2 = time.time()
|
| 184 |
st.write(f"Total time to load Model is {(t2-t1)*1000:.1f} ms")
|
| 185 |
|
|
|
|
| 188 |
c1,c2,_,_=st.columns(4)
|
| 189 |
|
| 190 |
with c1:
|
| 191 |
+
response1=st.button("Compute (ONNX runtime)")
|
| 192 |
+
|
| 193 |
+
if response1:
|
| 194 |
+
start = time.time()
|
| 195 |
+
sentiments=classify_sentiment_onnx(input_texts,
|
| 196 |
+
_session=sentiment_session,
|
| 197 |
+
_tokenizer=tokenizer_sentiment)
|
| 198 |
+
end = time.time()
|
| 199 |
+
st.write(f"Time taken for computation {(end - start) * 1000:.1f} ms")
|
| 200 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
for i,t in enumerate(input_texts.split(',')):
|
| 202 |
if sentiments[i]=='Positive':
|
| 203 |
response=st_text_rater(t + f"--> This statement is {sentiments[i]}",
|
|
|
|
| 205 |
else:
|
| 206 |
response = st_text_rater(t + f"--> This statement is {sentiments[i]}",
|
| 207 |
color_background='rgb(233, 116, 81)',key=t)
|
| 208 |
+
else:
|
| 209 |
+
pass
|
| 210 |
|
| 211 |
if select_task=='Zero Shot Classification':
|
| 212 |
t1=time.time()
|
|
|
|
| 221 |
c1,_,_,_=st.columns(4)
|
| 222 |
|
| 223 |
with c1:
|
| 224 |
+
response1=st.button("Compute (ONNX runtime)")
|
| 225 |
|
| 226 |
if response1:
|
| 227 |
start = time.time()
|
sentiment_model_dir/config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "distilbert-base-uncased-finetuned-sst-2-english",
|
| 3 |
+
"activation": "gelu",
|
| 4 |
+
"architectures": [
|
| 5 |
+
"DistilBertForSequenceClassification"
|
| 6 |
+
],
|
| 7 |
+
"attention_dropout": 0.1,
|
| 8 |
+
"dim": 768,
|
| 9 |
+
"dropout": 0.1,
|
| 10 |
+
"finetuning_task": "sst-2",
|
| 11 |
+
"hidden_dim": 3072,
|
| 12 |
+
"id2label": {
|
| 13 |
+
"0": "NEGATIVE",
|
| 14 |
+
"1": "POSITIVE"
|
| 15 |
+
},
|
| 16 |
+
"initializer_range": 0.02,
|
| 17 |
+
"label2id": {
|
| 18 |
+
"NEGATIVE": 0,
|
| 19 |
+
"POSITIVE": 1
|
| 20 |
+
},
|
| 21 |
+
"max_position_embeddings": 512,
|
| 22 |
+
"model_type": "distilbert",
|
| 23 |
+
"n_heads": 12,
|
| 24 |
+
"n_layers": 6,
|
| 25 |
+
"output_past": true,
|
| 26 |
+
"pad_token_id": 0,
|
| 27 |
+
"qa_dropout": 0.1,
|
| 28 |
+
"seq_classif_dropout": 0.2,
|
| 29 |
+
"sinusoidal_pos_embds": false,
|
| 30 |
+
"tie_weights_": true,
|
| 31 |
+
"torch_dtype": "float32",
|
| 32 |
+
"transformers_version": "4.18.0",
|
| 33 |
+
"vocab_size": 30522
|
| 34 |
+
}
|
sentiment_model_dir/special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
sentiment_model_dir/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
sentiment_model_dir/tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "distilbert-base-uncased-finetuned-sst-2-english", "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "DistilBertTokenizer"}
|
sentiment_model_dir/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
zs_model_dir/config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "valhalla/distilbart-mnli-12-1",
|
| 3 |
+
"_num_labels": 3,
|
| 4 |
+
"activation_dropout": 0.0,
|
| 5 |
+
"activation_function": "gelu",
|
| 6 |
+
"add_bias_logits": false,
|
| 7 |
+
"add_final_layer_norm": false,
|
| 8 |
+
"architectures": [
|
| 9 |
+
"BartForSequenceClassification"
|
| 10 |
+
],
|
| 11 |
+
"attention_dropout": 0.1,
|
| 12 |
+
"bos_token_id": 0,
|
| 13 |
+
"classif_dropout": 0.0,
|
| 14 |
+
"classifier_dropout": 0.0,
|
| 15 |
+
"d_model": 1024,
|
| 16 |
+
"decoder_attention_heads": 16,
|
| 17 |
+
"decoder_ffn_dim": 4096,
|
| 18 |
+
"decoder_layerdrop": 0.0,
|
| 19 |
+
"decoder_layers": 1,
|
| 20 |
+
"decoder_start_token_id": 2,
|
| 21 |
+
"dropout": 0.1,
|
| 22 |
+
"encoder_attention_heads": 16,
|
| 23 |
+
"encoder_ffn_dim": 4096,
|
| 24 |
+
"encoder_layerdrop": 0.0,
|
| 25 |
+
"encoder_layers": 12,
|
| 26 |
+
"eos_token_id": 2,
|
| 27 |
+
"extra_pos_embeddings": 2,
|
| 28 |
+
"finetuning_task": "mnli",
|
| 29 |
+
"force_bos_token_to_be_generated": false,
|
| 30 |
+
"forced_eos_token_id": 2,
|
| 31 |
+
"gradient_checkpointing": false,
|
| 32 |
+
"id2label": {
|
| 33 |
+
"0": "contradiction",
|
| 34 |
+
"1": "neutral",
|
| 35 |
+
"2": "entailment"
|
| 36 |
+
},
|
| 37 |
+
"init_std": 0.02,
|
| 38 |
+
"is_encoder_decoder": true,
|
| 39 |
+
"label2id": {
|
| 40 |
+
"contradiction": 0,
|
| 41 |
+
"entailment": 2,
|
| 42 |
+
"neutral": 1
|
| 43 |
+
},
|
| 44 |
+
"max_position_embeddings": 1024,
|
| 45 |
+
"model_type": "bart",
|
| 46 |
+
"normalize_before": false,
|
| 47 |
+
"normalize_embedding": true,
|
| 48 |
+
"num_hidden_layers": 12,
|
| 49 |
+
"output_past": false,
|
| 50 |
+
"pad_token_id": 1,
|
| 51 |
+
"scale_embedding": false,
|
| 52 |
+
"static_position_embeddings": false,
|
| 53 |
+
"torch_dtype": "float32",
|
| 54 |
+
"total_flos": 153130534133111808,
|
| 55 |
+
"transformers_version": "4.18.0",
|
| 56 |
+
"use_cache": true,
|
| 57 |
+
"vocab_size": 50265
|
| 58 |
+
}
|
zs_model_dir/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
zs_model_dir/special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
|
zs_model_dir/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
zs_model_dir/tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"errors": "replace", "bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "trim_offsets": true, "model_max_length": 1024, "special_tokens_map_file": "/Users/ashishrai/.cache/huggingface/transformers/1897a33c6ca1e896797e7f370753103e4fb6980c6371197c5658ff3a8269dc4a.cb2244924ab24d706b02fd7fcedaea4531566537687a539ebb94db511fd122a0", "name_or_path": "valhalla/distilbart-mnli-12-1", "tokenizer_class": "BartTokenizer"}
|
zs_model_dir/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|