Spaces:
Runtime error
Runtime error
import onnxruntime as ort | |
import torch | |
from transformers import AutoTokenizer | |
import numpy as np | |
tokenizer=AutoTokenizer.from_pretrained("sentiment_classifier/") | |
#create onnx & onnx_int_8 sessions | |
session=ort.InferenceSession("sent_clf_onnx/sentiment_classifier_onnx.onnx") | |
session_int8=ort.InferenceSession("sent_clf_onnx/sentiment_classifier_onnx_int8.onnx") | |
def classify_sentiment_onnx(texts,_model=session,_tokenizer=tokenizer): | |
""" | |
user will pass texts separated by comma | |
""" | |
try: | |
texts=texts.split(',') | |
except: | |
pass | |
_inputs = _tokenizer(texts, padding=True, truncation=True, | |
return_tensors="np") | |
input_feed={ | |
"input_ids":np.array(_inputs['input_ids']), | |
"attention_mask":np.array((_inputs['attention_mask'])) | |
} | |
output = _model.run(input_feed=input_feed, output_names=['output_0'])[0] | |
output=np.argmax(output,axis=1) | |
output = ['Positive' if i == 1 else 'Negative' for i in output] | |
return output | |
def classify_sentiment_onnx_quant(texts, _model=session_int8, _tokenizer=tokenizer): | |
""" | |
user will pass texts separated by comma | |
""" | |
try: | |
texts=texts.split(',') | |
except: | |
pass | |
_inputs = _tokenizer(texts, padding=True, truncation=True, | |
return_tensors="np") | |
input_feed={ | |
"input_ids":np.array(_inputs['input_ids']), | |
"attention_mask":np.array((_inputs['attention_mask'])) | |
} | |
output = _model.run(input_feed=input_feed, output_names=['output_0'])[0] | |
output=np.argmax(output,axis=1) | |
output = ['Positive' if i == 1 else 'Negative' for i in output] | |
return output | |