Spaces:
Runtime error
Runtime error
import pandas as pd | |
import streamlit | |
import torch | |
from transformers import AutoModelForSequenceClassification,AutoTokenizer | |
import numpy as np | |
import plotly.express as px | |
# chkpt='valhalla/distilbart-mnli-12-1' | |
# model=AutoModelForSequenceClassification.from_pretrained(chkpt) | |
# tokenizer=AutoTokenizer.from_pretrained('zero_shot_clf/') | |
def zero_shot_classification(premise: str, labels: str, model, tokenizer): | |
try: | |
labels=labels.split(',') | |
labels=[l.lower() for l in labels] | |
except: | |
raise Exception("please pass atleast 2 labels to classify") | |
premise=premise.lower() | |
labels_prob=[] | |
for l in labels: | |
hypothesis= f'this is an example of {l}' | |
input = tokenizer.encode(premise,hypothesis, | |
return_tensors='pt', | |
truncation_strategy='only_first') | |
output = model(input) | |
entail_contra_prob = output['logits'][:,[0,2]].softmax(dim=1)[:,1].item() #only normalizing entail & contradict probabilties | |
labels_prob.append(entail_contra_prob) | |
labels_prob_norm=[np.round(100*c/np.sum(labels_prob),1) for c in labels_prob] | |
df=pd.DataFrame({'labels':labels, | |
'Probability':labels_prob_norm}) | |
fig=px.bar(x='Probability', | |
y='labels', | |
text='Probability', | |
data_frame=df, | |
title='Zero Shot Normalized Probabilities') | |
return fig | |
# zero_shot_classification(premise='Tiny worms and breath analyzers could screen for \disease while it’s early and treatable', | |
# labels='science, sports, museum') | |