Spaces:
Runtime error
Runtime error
import pandas as pd | |
import streamlit as st | |
from streamlit_text_rating.st_text_rater import st_text_rater | |
from sentiment import classify_sentiment | |
st.set_page_config( # Alternate names: setup_page, page, layout | |
layout="wide", # Can be "centered" or "wide". In the future also "dashboard", etc. | |
initial_sidebar_state="auto", # Can be "auto", "expanded", "collapsed" | |
page_title='None', # String or None. Strings get appended with "• Streamlit". | |
) | |
padding_top = 0 | |
st.markdown(f""" | |
<style> | |
.reportview-container .main .block-container{{ | |
padding-top: {padding_top}rem; | |
}} | |
</style>""", | |
unsafe_allow_html=True, | |
) | |
def set_page_title(title): | |
st.sidebar.markdown(unsafe_allow_html=True, body=f""" | |
<iframe height=0 srcdoc="<script> | |
const title = window.parent.document.querySelector('title') \ | |
const oldObserver = window.parent.titleObserver | |
if (oldObserver) {{ | |
oldObserver.disconnect() | |
}} \ | |
const newObserver = new MutationObserver(function(mutations) {{ | |
const target = mutations[0].target | |
if (target.text !== '{title}') {{ | |
target.text = '{title}' | |
}} | |
}}) \ | |
newObserver.observe(title, {{ childList: true }}) | |
window.parent.titleObserver = newObserver \ | |
title.text = '{title}' | |
</script>" /> | |
""") | |
set_page_title('NLP use cases') | |
# Hide Menu Option | |
hide_streamlit_style = """ | |
<style> | |
#MainMenu {visibility: hidden;} | |
footer {visibility: hidden;} | |
</style> | |
""" | |
st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
st.title("NLP use cases") | |
with st.sidebar: | |
st.title("NLP tasks") | |
select_task=st.selectbox(label="Select task from drop down menu", | |
options=['Detect Sentiment','Zero Shot Classification']) | |
if select_task=='Detect Sentiment': | |
st.header("You are now performing Sentiment Analysis") | |
input_texts = st.text_input(label="Input texts separated by comma") | |
if input_texts!='': | |
sentiments = classify_sentiment(input_texts) | |
for i,t in enumerate(input_texts.split(',')): | |
if sentiments[i]=='Positive': | |
response=st_text_rater(t + f"--> This statement is {sentiments[i]}", | |
color_background='rgb(154,205,50)') | |
else: | |
response = st_text_rater(t + f"--> This statement is {sentiments[i]}", | |
color_background='rgb(233, 116, 81)') | |