Spaces:
Sleeping
Sleeping
ashiqu-ali
commited on
Commit
•
546f0b1
1
Parent(s):
0a738e2
Delete app.py
Browse files
app.py
DELETED
@@ -1,64 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import streamlit as st
|
3 |
-
import tensorflow as tf
|
4 |
-
import numpy as np
|
5 |
-
|
6 |
-
# Loading the saved model
|
7 |
-
model = tf.keras.models.load_model('model.h5')
|
8 |
-
|
9 |
-
def predict(input_image):
|
10 |
-
try:
|
11 |
-
# Preprocessing
|
12 |
-
input_image = tf.convert_to_tensor(input_image)
|
13 |
-
input_image = tf.image.resize(input_image, [224, 224])
|
14 |
-
input_image = tf.expand_dims(input_image, 0) / 255.0
|
15 |
-
|
16 |
-
# Prediction
|
17 |
-
predictions = model.predict(input_image)
|
18 |
-
labels = ['Cataract', 'Conjunctivitis', 'Glaucoma', 'Normal']
|
19 |
-
|
20 |
-
# Get confidence score for each class
|
21 |
-
disease_confidence = {label: np.round(predictions[0][idx] * 100, 3) for idx, label in enumerate(labels)}
|
22 |
-
|
23 |
-
# Get confidence percentage for the "Normal" class
|
24 |
-
normal_confidence = disease_confidence['Normal']
|
25 |
-
|
26 |
-
# Check if Normal confidence is greater than 50%
|
27 |
-
if normal_confidence > 50:
|
28 |
-
return f"""Congrats! no disease detected
|
29 |
-
Normal with confidence: {normal_confidence}%"""
|
30 |
-
|
31 |
-
|
32 |
-
output_lines = [f"\n{disease}: {confidence}%" for disease, confidence in disease_confidence.items()]
|
33 |
-
output_string = "\n".join(output_lines[:-1])
|
34 |
-
return output_string
|
35 |
-
|
36 |
-
|
37 |
-
except Exception as e:
|
38 |
-
return f"An error occurred: {e}"
|
39 |
-
|
40 |
-
# Example images directory
|
41 |
-
examples = [os.path.join("example", file) for file in os.listdir("example")]
|
42 |
-
|
43 |
-
# Streamlit app
|
44 |
-
st.title("👁️ Eye Disease Detection")
|
45 |
-
st.write("This model identifies common eye diseases such as Cataract, Conjunctivitis, and Glaucoma. Upload an eye image to see how the model classifies its condition.")
|
46 |
-
|
47 |
-
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png"])
|
48 |
-
|
49 |
-
if uploaded_file is not None:
|
50 |
-
# Display the uploaded image
|
51 |
-
image = tf.image.decode_image(uploaded_file.read(), channels=3)
|
52 |
-
image_np = image.numpy()
|
53 |
-
st.image(image_np, caption='Uploaded Image.', use_column_width=True)
|
54 |
-
|
55 |
-
# Perform prediction
|
56 |
-
prediction = predict(image_np)
|
57 |
-
st.write("Prediction:")
|
58 |
-
st.write(prediction)
|
59 |
-
|
60 |
-
# Display examples images
|
61 |
-
st.write("Examples:")
|
62 |
-
cols = st.columns(len(examples))
|
63 |
-
for idx, example in enumerate(examples):
|
64 |
-
cols[idx].image(example, caption=os.path.basename(example))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|