Spaces:
Running
on
Zero
Running
on
Zero
namespace isPowerOfTwo | |
{ | |
template<typename genType> | |
struct type | |
{ | |
genType Value; | |
bool Return; | |
}; | |
int test_int16() | |
{ | |
type<glm::int16> const Data[] = | |
{ | |
{0x0001, true}, | |
{0x0002, true}, | |
{0x0004, true}, | |
{0x0080, true}, | |
{0x0000, true}, | |
{0x0003, false} | |
}; | |
int Error = 0; | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int16>); i < n; ++i) | |
{ | |
bool Result = glm::isPowerOfTwo(Data[i].Value); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
return Error; | |
} | |
int test_uint16() | |
{ | |
type<glm::uint16> const Data[] = | |
{ | |
{0x0001, true}, | |
{0x0002, true}, | |
{0x0004, true}, | |
{0x0000, true}, | |
{0x0000, true}, | |
{0x0003, false} | |
}; | |
int Error = 0; | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint16>); i < n; ++i) | |
{ | |
bool Result = glm::isPowerOfTwo(Data[i].Value); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
return Error; | |
} | |
int test_int32() | |
{ | |
type<int> const Data[] = | |
{ | |
{0x00000001, true}, | |
{0x00000002, true}, | |
{0x00000004, true}, | |
{0x0000000f, false}, | |
{0x00000000, true}, | |
{0x00000003, false} | |
}; | |
int Error = 0; | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<int>); i < n; ++i) | |
{ | |
bool Result = glm::isPowerOfTwo(Data[i].Value); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
return Error; | |
} | |
int test_uint32() | |
{ | |
type<glm::uint> const Data[] = | |
{ | |
{0x00000001, true}, | |
{0x00000002, true}, | |
{0x00000004, true}, | |
{0x80000000, true}, | |
{0x00000000, true}, | |
{0x00000003, false} | |
}; | |
int Error = 0; | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint>); i < n; ++i) | |
{ | |
bool Result = glm::isPowerOfTwo(Data[i].Value); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
return Error; | |
} | |
int test() | |
{ | |
int Error = 0; | |
Error += test_int16(); | |
Error += test_uint16(); | |
Error += test_int32(); | |
Error += test_uint32(); | |
return Error; | |
} | |
}//isPowerOfTwo | |
namespace nextPowerOfTwo_advanced | |
{ | |
template<typename genIUType> | |
GLM_FUNC_QUALIFIER genIUType highestBitValue(genIUType Value) | |
{ | |
genIUType tmp = Value; | |
genIUType result = genIUType(0); | |
while(tmp) | |
{ | |
result = (tmp & (~tmp + 1)); // grab lowest bit | |
tmp &= ~result; // clear lowest bit | |
} | |
return result; | |
} | |
template<typename genType> | |
GLM_FUNC_QUALIFIER genType nextPowerOfTwo_loop(genType value) | |
{ | |
return glm::isPowerOfTwo(value) ? value : highestBitValue(value) << 1; | |
} | |
template<typename genType> | |
struct type | |
{ | |
genType Value; | |
genType Return; | |
}; | |
int test_int32() | |
{ | |
type<glm::int32> const Data[] = | |
{ | |
{0x0000ffff, 0x00010000}, | |
{-3, -4}, | |
{-8, -8}, | |
{0x00000001, 0x00000001}, | |
{0x00000002, 0x00000002}, | |
{0x00000004, 0x00000004}, | |
{0x00000007, 0x00000008}, | |
{0x0000fff0, 0x00010000}, | |
{0x0000f000, 0x00010000}, | |
{0x08000000, 0x08000000}, | |
{0x00000000, 0x00000000}, | |
{0x00000003, 0x00000004} | |
}; | |
int Error(0); | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::int32>); i < n; ++i) | |
{ | |
glm::int32 Result = glm::nextPowerOfTwo(Data[i].Value); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
return Error; | |
} | |
int test_uint32() | |
{ | |
type<glm::uint32> const Data[] = | |
{ | |
{0x00000001, 0x00000001}, | |
{0x00000002, 0x00000002}, | |
{0x00000004, 0x00000004}, | |
{0x00000007, 0x00000008}, | |
{0x0000ffff, 0x00010000}, | |
{0x0000fff0, 0x00010000}, | |
{0x0000f000, 0x00010000}, | |
{0x80000000, 0x80000000}, | |
{0x00000000, 0x00000000}, | |
{0x00000003, 0x00000004} | |
}; | |
int Error(0); | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<glm::uint32>); i < n; ++i) | |
{ | |
glm::uint32 Result = glm::nextPowerOfTwo(Data[i].Value); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
return Error; | |
} | |
int perf() | |
{ | |
int Error(0); | |
std::vector<glm::uint> v; | |
v.resize(100000000); | |
std::clock_t Timestramp0 = std::clock(); | |
for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i) | |
v[i] = nextPowerOfTwo_loop(i); | |
std::clock_t Timestramp1 = std::clock(); | |
for(glm::uint32 i = 0, n = static_cast<glm::uint>(v.size()); i < n; ++i) | |
v[i] = glm::nextPowerOfTwo(i); | |
std::clock_t Timestramp2 = std::clock(); | |
std::printf("nextPowerOfTwo_loop: %d clocks\n", static_cast<int>(Timestramp1 - Timestramp0)); | |
std::printf("glm::nextPowerOfTwo: %d clocks\n", static_cast<int>(Timestramp2 - Timestramp1)); | |
return Error; | |
} | |
int test() | |
{ | |
int Error(0); | |
Error += test_int32(); | |
Error += test_uint32(); | |
return Error; | |
} | |
}//namespace nextPowerOfTwo_advanced | |
namespace prevPowerOfTwo | |
{ | |
template <typename T> | |
int run() | |
{ | |
int Error = 0; | |
T const A = glm::prevPowerOfTwo(static_cast<T>(7)); | |
Error += A == static_cast<T>(4) ? 0 : 1; | |
T const B = glm::prevPowerOfTwo(static_cast<T>(15)); | |
Error += B == static_cast<T>(8) ? 0 : 1; | |
T const C = glm::prevPowerOfTwo(static_cast<T>(31)); | |
Error += C == static_cast<T>(16) ? 0 : 1; | |
T const D = glm::prevPowerOfTwo(static_cast<T>(32)); | |
Error += D == static_cast<T>(32) ? 0 : 1; | |
return Error; | |
} | |
int test() | |
{ | |
int Error = 0; | |
Error += run<glm::int8>(); | |
Error += run<glm::int16>(); | |
Error += run<glm::int32>(); | |
Error += run<glm::int64>(); | |
Error += run<glm::uint8>(); | |
Error += run<glm::uint16>(); | |
Error += run<glm::uint32>(); | |
Error += run<glm::uint64>(); | |
return Error; | |
} | |
}//namespace prevPowerOfTwo | |
namespace nextPowerOfTwo | |
{ | |
template <typename T> | |
int run() | |
{ | |
int Error = 0; | |
T const A = glm::nextPowerOfTwo(static_cast<T>(7)); | |
Error += A == static_cast<T>(8) ? 0 : 1; | |
T const B = glm::nextPowerOfTwo(static_cast<T>(15)); | |
Error += B == static_cast<T>(16) ? 0 : 1; | |
T const C = glm::nextPowerOfTwo(static_cast<T>(31)); | |
Error += C == static_cast<T>(32) ? 0 : 1; | |
T const D = glm::nextPowerOfTwo(static_cast<T>(32)); | |
Error += D == static_cast<T>(32) ? 0 : 1; | |
return Error; | |
} | |
int test() | |
{ | |
int Error = 0; | |
Error += run<glm::int8>(); | |
Error += run<glm::int16>(); | |
Error += run<glm::int32>(); | |
Error += run<glm::int64>(); | |
Error += run<glm::uint8>(); | |
Error += run<glm::uint16>(); | |
Error += run<glm::uint32>(); | |
Error += run<glm::uint64>(); | |
return Error; | |
} | |
}//namespace nextPowerOfTwo | |
namespace prevMultiple | |
{ | |
template<typename genIUType> | |
struct type | |
{ | |
genIUType Source; | |
genIUType Multiple; | |
genIUType Return; | |
}; | |
template <typename T> | |
int run() | |
{ | |
type<T> const Data[] = | |
{ | |
{8, 3, 6}, | |
{7, 7, 7} | |
}; | |
int Error = 0; | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i) | |
{ | |
T const Result = glm::prevMultiple(Data[i].Source, Data[i].Multiple); | |
Error += Data[i].Return == Result ? 0 : 1; | |
} | |
return Error; | |
} | |
int test() | |
{ | |
int Error = 0; | |
Error += run<glm::int8>(); | |
Error += run<glm::int16>(); | |
Error += run<glm::int32>(); | |
Error += run<glm::int64>(); | |
Error += run<glm::uint8>(); | |
Error += run<glm::uint16>(); | |
Error += run<glm::uint32>(); | |
Error += run<glm::uint64>(); | |
return Error; | |
} | |
}//namespace prevMultiple | |
namespace nextMultiple | |
{ | |
static glm::uint const Multiples = 128; | |
int perf_nextMultiple(glm::uint Samples) | |
{ | |
std::vector<glm::uint> Results(Samples * Multiples); | |
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); | |
for(glm::uint Source = 0; Source < Samples; ++Source) | |
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) | |
{ | |
Results[Source * Multiples + Multiple] = glm::nextMultiple(Source, Multiples); | |
} | |
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); | |
std::printf("- glm::nextMultiple Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); | |
glm::uint Result = 0; | |
for(std::size_t i = 0, n = Results.size(); i < n; ++i) | |
Result += Results[i]; | |
return Result > 0 ? 0 : 1; | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER T nextMultipleMod(T Source, T Multiple) | |
{ | |
T const Tmp = Source - static_cast<T>(1); | |
return Tmp + (Multiple - (Tmp % Multiple)); | |
} | |
int perf_nextMultipleMod(glm::uint Samples) | |
{ | |
std::vector<glm::uint> Results(Samples * Multiples); | |
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); | |
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) | |
for (glm::uint Source = 0; Source < Samples; ++Source) | |
{ | |
Results[Source * Multiples + Multiple] = nextMultipleMod(Source, Multiples); | |
} | |
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); | |
std::printf("- nextMultipleMod Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); | |
glm::uint Result = 0; | |
for(std::size_t i = 0, n = Results.size(); i < n; ++i) | |
Result += Results[i]; | |
return Result > 0 ? 0 : 1; | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER T nextMultipleNeg(T Source, T Multiple) | |
{ | |
if(Source > static_cast<T>(0)) | |
{ | |
T const Tmp = Source - static_cast<T>(1); | |
return Tmp + (Multiple - (Tmp % Multiple)); | |
} | |
else | |
return Source + (-Source % Multiple); | |
} | |
int perf_nextMultipleNeg(glm::uint Samples) | |
{ | |
std::vector<glm::uint> Results(Samples * Multiples); | |
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); | |
for(glm::uint Source = 0; Source < Samples; ++Source) | |
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) | |
{ | |
Results[Source * Multiples + Multiple] = nextMultipleNeg(Source, Multiples); | |
} | |
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); | |
std::printf("- nextMultipleNeg Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); | |
glm::uint Result = 0; | |
for (std::size_t i = 0, n = Results.size(); i < n; ++i) | |
Result += Results[i]; | |
return Result > 0 ? 0 : 1; | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER T nextMultipleUFloat(T Source, T Multiple) | |
{ | |
return Source + (Multiple - std::fmod(Source, Multiple)); | |
} | |
int perf_nextMultipleUFloat(glm::uint Samples) | |
{ | |
std::vector<float> Results(Samples * Multiples); | |
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); | |
for(glm::uint Source = 0; Source < Samples; ++Source) | |
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) | |
{ | |
Results[Source * Multiples + Multiple] = nextMultipleUFloat(static_cast<float>(Source), static_cast<float>(Multiples)); | |
} | |
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); | |
std::printf("- nextMultipleUFloat Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); | |
float Result = 0; | |
for (std::size_t i = 0, n = Results.size(); i < n; ++i) | |
Result += Results[i]; | |
return Result > 0.0f ? 0 : 1; | |
} | |
template <typename T> | |
GLM_FUNC_QUALIFIER T nextMultipleFloat(T Source, T Multiple) | |
{ | |
if(Source > static_cast<float>(0)) | |
return Source + (Multiple - std::fmod(Source, Multiple)); | |
else | |
return Source + std::fmod(-Source, Multiple); | |
} | |
int perf_nextMultipleFloat(glm::uint Samples) | |
{ | |
std::vector<float> Results(Samples * Multiples); | |
std::chrono::high_resolution_clock::time_point t0 = std::chrono::high_resolution_clock::now(); | |
for(glm::uint Source = 0; Source < Samples; ++Source) | |
for(glm::uint Multiple = 0; Multiple < Multiples; ++Multiple) | |
{ | |
Results[Source * Multiples + Multiple] = nextMultipleFloat(static_cast<float>(Source), static_cast<float>(Multiples)); | |
} | |
std::chrono::high_resolution_clock::time_point t1 = std::chrono::high_resolution_clock::now(); | |
std::printf("- nextMultipleFloat Time %d microseconds\n", static_cast<int>(std::chrono::duration_cast<std::chrono::microseconds>(t1 - t0).count())); | |
float Result = 0; | |
for (std::size_t i = 0, n = Results.size(); i < n; ++i) | |
Result += Results[i]; | |
return Result > 0.0f ? 0 : 1; | |
} | |
template<typename genIUType> | |
struct type | |
{ | |
genIUType Source; | |
genIUType Multiple; | |
genIUType Return; | |
}; | |
template <typename T> | |
int test_uint() | |
{ | |
type<T> const Data[] = | |
{ | |
{ 3, 4, 4 }, | |
{ 6, 3, 6 }, | |
{ 5, 3, 6 }, | |
{ 7, 7, 7 }, | |
{ 0, 1, 0 }, | |
{ 8, 3, 9 } | |
}; | |
int Error = 0; | |
for(std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i) | |
{ | |
T const Result0 = glm::nextMultiple(Data[i].Source, Data[i].Multiple); | |
Error += Data[i].Return == Result0 ? 0 : 1; | |
assert(!Error); | |
T const Result1 = nextMultipleMod(Data[i].Source, Data[i].Multiple); | |
Error += Data[i].Return == Result1 ? 0 : 1; | |
assert(!Error); | |
} | |
return Error; | |
} | |
int perf() | |
{ | |
int Error = 0; | |
glm::uint const Samples = 10000; | |
for(int i = 0; i < 4; ++i) | |
{ | |
std::printf("Run %d :\n", i); | |
Error += perf_nextMultiple(Samples); | |
Error += perf_nextMultipleMod(Samples); | |
Error += perf_nextMultipleNeg(Samples); | |
Error += perf_nextMultipleUFloat(Samples); | |
Error += perf_nextMultipleFloat(Samples); | |
std::printf("\n"); | |
} | |
return Error; | |
} | |
int test() | |
{ | |
int Error = 0; | |
Error += test_uint<glm::int8>(); | |
Error += test_uint<glm::int16>(); | |
Error += test_uint<glm::int32>(); | |
Error += test_uint<glm::int64>(); | |
Error += test_uint<glm::uint8>(); | |
Error += test_uint<glm::uint16>(); | |
Error += test_uint<glm::uint32>(); | |
Error += test_uint<glm::uint64>(); | |
return Error; | |
} | |
}//namespace nextMultiple | |
namespace findNSB | |
{ | |
template<typename T> | |
struct type | |
{ | |
T Source; | |
int SignificantBitCount; | |
int Return; | |
}; | |
template <typename T> | |
int run() | |
{ | |
type<T> const Data[] = | |
{ | |
{ 0x00, 1,-1 }, | |
{ 0x01, 2,-1 }, | |
{ 0x02, 2,-1 }, | |
{ 0x06, 3,-1 }, | |
{ 0x01, 1, 0 }, | |
{ 0x03, 1, 0 }, | |
{ 0x03, 2, 1 }, | |
{ 0x07, 2, 1 }, | |
{ 0x05, 2, 2 }, | |
{ 0x0D, 2, 2 } | |
}; | |
int Error = 0; | |
for (std::size_t i = 0, n = sizeof(Data) / sizeof(type<T>); i < n; ++i) | |
{ | |
int const Result0 = glm::findNSB(Data[i].Source, Data[i].SignificantBitCount); | |
Error += Data[i].Return == Result0 ? 0 : 1; | |
assert(!Error); | |
} | |
return Error; | |
} | |
int test() | |
{ | |
int Error = 0; | |
Error += run<glm::uint8>(); | |
Error += run<glm::uint16>(); | |
Error += run<glm::uint32>(); | |
Error += run<glm::uint64>(); | |
Error += run<glm::int8>(); | |
Error += run<glm::int16>(); | |
Error += run<glm::int32>(); | |
Error += run<glm::int64>(); | |
return Error; | |
} | |
}//namespace findNSB | |
int main() | |
{ | |
int Error = 0; | |
Error += findNSB::test(); | |
Error += isPowerOfTwo::test(); | |
Error += prevPowerOfTwo::test(); | |
Error += nextPowerOfTwo::test(); | |
Error += nextPowerOfTwo_advanced::test(); | |
Error += prevMultiple::test(); | |
Error += nextMultiple::test(); | |
Error += nextPowerOfTwo_advanced::perf(); | |
Error += nextMultiple::perf(); | |
return Error; | |
} | |
int main() | |
{ | |
return 0; | |
} | |