Spaces:
Runtime error
Runtime error
import os | |
import uuid | |
from flask import Flask, request, jsonify, send_file | |
from flask_cors import CORS | |
from ultralytics import YOLO | |
app = Flask(__name__) | |
CORS(app) # 允许所有域名进行访问 | |
# 模型字典,可以根据需要更新 | |
models = { | |
'追踪': 'models\detect\yolov8n.pt', | |
'检测': 'models\detect\弹珠模型.pt', | |
'分类': 'models\classify\yolov8n-cls.pt', | |
'姿势': 'models\pose\yolov8n-pose.pt', | |
'分割': 'models\segment\yolov8n-seg.pt' | |
} | |
model_instances = {} | |
def load_model(model_path): | |
try: | |
return YOLO(model_path) # 直接调用训练好的模型 | |
except Exception as e: | |
print(f"Failed to load model from {model_path}: {e}") | |
return None | |
def home(): | |
return "Welcome to the YOLOv8 Flask App!" | |
def handle_request(): | |
try: | |
selected_model = request.form.get('model') | |
if selected_model not in models: | |
return jsonify({'error': 'Invalid model selected.'}), 400 | |
model_path = models[selected_model] | |
if selected_model not in model_instances: | |
model_instances[selected_model] = load_model(model_path) | |
model = model_instances[selected_model] | |
if model is None: | |
return jsonify({'error': 'Model is not loaded due to connection error.'}), 500 | |
img = request.files.get('img') | |
if img is None: | |
return jsonify({'error': 'No image provided.'}), 400 | |
img_name = str(uuid.uuid4()) + '.jpg' | |
img_path = os.path.join('./img', img_name) | |
os.makedirs(os.path.dirname(img_path), exist_ok=True) | |
img.save(img_path) | |
print(f"Image saved at {img_path}") | |
save_dir = './runs/detect' | |
os.makedirs(save_dir, exist_ok=True) | |
results = model.predict(img_path, save=True, project=save_dir, name=img_name.split('.')[0], device='cpu') # Device should be 'cpu' or 'cuda' | |
# 获取预测结果路径 | |
predicted_img_path = os.path.join(save_dir, img_name.split('.')[0], img_name) | |
if not os.path.exists(predicted_img_path): | |
print(f"Prediction result not found at {predicted_img_path}") | |
return jsonify({'error': 'Prediction result not found.'}), 500 | |
print(f"Prediction successful. Result saved at {predicted_img_path}") | |
return jsonify({'message': 'Prediction successful!', 'img_path': f'/get/{img_name}'}) | |
except Exception as e: | |
print(f"Error during request processing: {e}") | |
return jsonify({'error': f'An error occurred during processing: {e}'}), 500 | |
def get_file(filename): | |
try: | |
save_dir = './runs/detect' | |
predicted_img_path = os.path.join(save_dir, filename.split('.')[0], filename) | |
print(f"Trying to send file from path: {predicted_img_path}") | |
if not os.path.exists(predicted_img_path): | |
return jsonify({'error': 'Prediction result not found.'}), 404 | |
return send_file(predicted_img_path, mimetype='image/jpeg') | |
except Exception as e: | |
print(f"Error during file retrieval: {e}") | |
return jsonify({'error': f'Failed to retrieve the result image. Error: {e}'}), 500 | |
if __name__ == '__main__': | |
app.run(host='0.0.0.0', port=5000, debug=True) # 允许从任何网络接口访问 | |