Spaces:
Runtime error
Runtime error
from flask import Flask, request, jsonify, send_from_directory, render_template | |
from flask_cors import CORS | |
from ultralytics import YOLO | |
import gradio as gr | |
from threading import Thread | |
import os | |
import uuid | |
import logging | |
from PIL import Image | |
# 配置日志记录 | |
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s:%(message)s', datefmt='%Y-%m-%d %H:%M:%S') | |
# 创建 Flask 应用 | |
app = Flask(__name__, static_folder='D:/YOLOv8-GUI-PySide6-main/yolov8/runs/detect') | |
CORS(app) | |
# 定义模型路径 | |
models = { | |
'追踪': 'models/yolov8n.pt', | |
'检测': 'models/yolov8n-cls.pt', | |
'分类': 'models/danzhu.pt', | |
'姿势': 'models/yolov8n-pose.pt', | |
'分割': 'models/yolov8n-seg.pt' | |
} | |
model_instances = {} | |
def load_model(model_path): | |
"""加载模型""" | |
try: | |
logging.info(f"正在从 {model_path} 加载模型...") | |
model = YOLO(model_path) | |
logging.info(f"模型从 {model_path} 成功加载") | |
return model | |
except Exception as e: | |
logging.error(f"从 {model_path} 加载模型失败: {e}") | |
return None | |
def convert_image_format(img_path, target_format='JPEG'): | |
"""转换图像格式""" | |
try: | |
with Image.open(img_path) as img: | |
if img.mode != 'RGB': | |
img = img.convert('RGB') | |
base_name, _ = os.path.splitext(img_path) | |
target_path = f"{base_name}.{target_format.lower()}" | |
img.save(target_path, format=target_format) | |
logging.info(f"图像格式成功转换为 {target_format},保存到 {target_path}") | |
return target_path | |
except Exception as e: | |
logging.error(f"图像格式转换失败: {e}") | |
raise | |
def predict(model_name, img_path): | |
"""进行预测""" | |
try: | |
if model_name not in models: | |
logging.error("选择的模型无效。") | |
return "选择的模型无效。" | |
model_path = models[model_name] | |
if model_name not in model_instances: | |
model_instances[model_name] = load_model(model_path) | |
model = model_instances[model_name] | |
if model is None: | |
logging.error("由于连接错误,模型未加载。") | |
return "由于连接错误,模型未加载。" | |
unique_name = str(uuid.uuid4()) | |
save_dir = './runs/detect' | |
os.makedirs(save_dir, exist_ok=True) | |
logging.info(f"保存目录: {save_dir}") | |
# 转换图像格式 | |
img_path_converted = convert_image_format(img_path, 'JPEG') | |
img_path_converted = os.path.normpath(img_path_converted) | |
logging.info(f"对 {img_path_converted} 进行预测...") | |
results = model.predict(img_path_converted, save=True, project=save_dir, name=unique_name, device='cpu') | |
logging.info(f"预测结果: {results}") | |
result_dir = os.path.join(save_dir, unique_name) | |
result_dir = os.path.normpath(result_dir) | |
logging.info(f"结果目录: {result_dir}") | |
if not os.path.exists(result_dir): | |
logging.error(f"结果目录 {result_dir} 不存在") | |
return "未找到预测结果。" | |
# 查找预测结果文件 | |
predicted_img_path = None | |
for file in os.listdir(result_dir): | |
if file.lower().endswith(('.jpeg', '.jpg')): | |
predicted_img_path = os.path.join(result_dir, file) | |
break | |
if predicted_img_path: | |
logging.info(f"找到预测图像: {predicted_img_path}") | |
return predicted_img_path | |
else: | |
logging.error(f"在 {result_dir} 中未找到预测图像") | |
return "未找到预测结果。" | |
except Exception as e: | |
logging.error(f"预测过程中出错: {e}") | |
return f"预测过程中出错: {e}" | |
# 定义 Gradio 界面 | |
iface = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Dropdown(choices=list(models.keys()), label="选择模型"), | |
gr.Image(type="filepath", label="输入图像") | |
], | |
outputs=gr.Image(type="filepath", label="输出图像") | |
) | |
def home(): | |
"""主页""" | |
return render_template('index.html') | |
def handle_request(): | |
"""处理请求""" | |
try: | |
selected_model = request.form.get('model') | |
if selected_model not in models: | |
logging.error("选择的模型无效。") | |
return jsonify({'error': '选择的模型无效。'}), 400 | |
model_path = models[selected_model] | |
if selected_model not in model_instances: | |
model_instances[selected_model] = load_model(model_path) | |
model = model_instances[selected_model] | |
if model is None: | |
logging.error("由于连接错误,模型未加载。") | |
return jsonify({'error': '由于连接错误,模型未加载。'}), 500 | |
img = request.files.get('img') | |
if img is None: | |
logging.error("未提供图像。") | |
return jsonify({'error': '未提供图像。'}), 400 | |
img_name = str(uuid.uuid4()) + '.jpg' | |
img_path = os.path.join('./img', img_name) | |
os.makedirs(os.path.dirname(img_path), exist_ok=True) | |
img.save(img_path) | |
logging.info(f"图像已保存到: {img_path}") | |
save_dir = './runs/detect' | |
os.makedirs(save_dir, exist_ok=True) | |
unique_name = str(uuid.uuid4()) | |
logging.info(f"对 {img_path} 进行预测...") | |
results = model.predict(img_path, save=True, project=save_dir, name=unique_name, device='cpu') | |
logging.info(f"预测结果: {results}") | |
result_dir = os.path.join(save_dir, unique_name) | |
# 查找预测结果文件 | |
predicted_img_path = None | |
for file in os.listdir(result_dir): | |
if file.endswith('.jpeg') or file.endswith('.jpg'): | |
predicted_img_path = os.path.join(result_dir, file) | |
break | |
if predicted_img_path: | |
img_url = f'/get/{unique_name}/{os.path.basename(predicted_img_path)}' | |
return jsonify({'message': '预测成功!', 'img_path': img_url}) | |
else: | |
saved_files = os.listdir(result_dir) | |
logging.error(f"保存目录中包含文件: {saved_files}") | |
return jsonify({'error': '未找到预测结果。'}), 500 | |
except Exception as e: | |
logging.error(f"处理请求时出错: {e}") | |
return jsonify({'error': f'处理过程中发生错误: {e}'}), 500 | |
def get_image(filename): | |
"""获取图像""" | |
try: | |
return send_from_directory('runs/detect', filename) | |
except Exception as e: | |
logging.error(f"提供文件时出错: {e}") | |
return jsonify({'error': '文件未找到。'}), 404 | |
def run_gradio(): | |
"""运行 Gradio 界面""" | |
if os.getenv('HF_SPACE'): | |
iface.launch(server_name="0.0.0.0", server_port=7890) # 在 Hugging Face Spaces 上运行 | |
else: | |
iface.launch(server_name="0.0.0.0", server_port=7890, share=True) # 本地运行 | |
def run_flask(): | |
"""运行 Flask 应用""" | |
app.run(host="0.0.0.0", port=5000) | |
if __name__ == '__main__': | |
gradio_thread = Thread(target=run_gradio) | |
flask_thread = Thread(target=run_flask) | |
gradio_thread.start() | |
flask_thread.start() | |
gradio_thread.join() | |
flask_thread.join() | |