bbb / app.py
asgsfhdsfhdfg's picture
Upload app.py
5f9c0f6 verified
from flask import Flask, request, jsonify, send_from_directory, render_template
from flask_cors import CORS
from ultralytics import YOLO
import gradio as gr
from threading import Thread
import os
import uuid
import logging
from PIL import Image
# 配置日志记录
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s:%(message)s', datefmt='%Y-%m-%d %H:%M:%S')
# 创建 Flask 应用
app = Flask(__name__, static_folder='D:/YOLOv8-GUI-PySide6-main/yolov8/runs/detect')
CORS(app)
# 定义模型路径
models = {
'追踪': 'models/yolov8n.pt',
'检测': 'models/yolov8n-cls.pt',
'分类': 'models/danzhu.pt',
'姿势': 'models/yolov8n-pose.pt',
'分割': 'models/yolov8n-seg.pt'
}
model_instances = {}
def load_model(model_path):
"""加载模型"""
try:
logging.info(f"正在从 {model_path} 加载模型...")
model = YOLO(model_path)
logging.info(f"模型从 {model_path} 成功加载")
return model
except Exception as e:
logging.error(f"从 {model_path} 加载模型失败: {e}")
return None
def convert_image_format(img_path, target_format='JPEG'):
"""转换图像格式"""
try:
with Image.open(img_path) as img:
if img.mode != 'RGB':
img = img.convert('RGB')
base_name, _ = os.path.splitext(img_path)
target_path = f"{base_name}.{target_format.lower()}"
img.save(target_path, format=target_format)
logging.info(f"图像格式成功转换为 {target_format},保存到 {target_path}")
return target_path
except Exception as e:
logging.error(f"图像格式转换失败: {e}")
raise
def predict(model_name, img_path):
"""进行预测"""
try:
if model_name not in models:
logging.error("选择的模型无效。")
return "选择的模型无效。"
model_path = models[model_name]
if model_name not in model_instances:
model_instances[model_name] = load_model(model_path)
model = model_instances[model_name]
if model is None:
logging.error("由于连接错误,模型未加载。")
return "由于连接错误,模型未加载。"
unique_name = str(uuid.uuid4())
save_dir = './runs/detect'
os.makedirs(save_dir, exist_ok=True)
logging.info(f"保存目录: {save_dir}")
# 转换图像格式
img_path_converted = convert_image_format(img_path, 'JPEG')
img_path_converted = os.path.normpath(img_path_converted)
logging.info(f"对 {img_path_converted} 进行预测...")
results = model.predict(img_path_converted, save=True, project=save_dir, name=unique_name, device='cpu')
logging.info(f"预测结果: {results}")
result_dir = os.path.join(save_dir, unique_name)
result_dir = os.path.normpath(result_dir)
logging.info(f"结果目录: {result_dir}")
if not os.path.exists(result_dir):
logging.error(f"结果目录 {result_dir} 不存在")
return "未找到预测结果。"
# 查找预测结果文件
predicted_img_path = None
for file in os.listdir(result_dir):
if file.lower().endswith(('.jpeg', '.jpg')):
predicted_img_path = os.path.join(result_dir, file)
break
if predicted_img_path:
logging.info(f"找到预测图像: {predicted_img_path}")
return predicted_img_path
else:
logging.error(f"在 {result_dir} 中未找到预测图像")
return "未找到预测结果。"
except Exception as e:
logging.error(f"预测过程中出错: {e}")
return f"预测过程中出错: {e}"
# 定义 Gradio 界面
iface = gr.Interface(
fn=predict,
inputs=[
gr.Dropdown(choices=list(models.keys()), label="选择模型"),
gr.Image(type="filepath", label="输入图像")
],
outputs=gr.Image(type="filepath", label="输出图像")
)
@app.route('/')
def home():
"""主页"""
return render_template('index.html')
@app.route('/request', methods=['POST'])
def handle_request():
"""处理请求"""
try:
selected_model = request.form.get('model')
if selected_model not in models:
logging.error("选择的模型无效。")
return jsonify({'error': '选择的模型无效。'}), 400
model_path = models[selected_model]
if selected_model not in model_instances:
model_instances[selected_model] = load_model(model_path)
model = model_instances[selected_model]
if model is None:
logging.error("由于连接错误,模型未加载。")
return jsonify({'error': '由于连接错误,模型未加载。'}), 500
img = request.files.get('img')
if img is None:
logging.error("未提供图像。")
return jsonify({'error': '未提供图像。'}), 400
img_name = str(uuid.uuid4()) + '.jpg'
img_path = os.path.join('./img', img_name)
os.makedirs(os.path.dirname(img_path), exist_ok=True)
img.save(img_path)
logging.info(f"图像已保存到: {img_path}")
save_dir = './runs/detect'
os.makedirs(save_dir, exist_ok=True)
unique_name = str(uuid.uuid4())
logging.info(f"对 {img_path} 进行预测...")
results = model.predict(img_path, save=True, project=save_dir, name=unique_name, device='cpu')
logging.info(f"预测结果: {results}")
result_dir = os.path.join(save_dir, unique_name)
# 查找预测结果文件
predicted_img_path = None
for file in os.listdir(result_dir):
if file.endswith('.jpeg') or file.endswith('.jpg'):
predicted_img_path = os.path.join(result_dir, file)
break
if predicted_img_path:
img_url = f'/get/{unique_name}/{os.path.basename(predicted_img_path)}'
return jsonify({'message': '预测成功!', 'img_path': img_url})
else:
saved_files = os.listdir(result_dir)
logging.error(f"保存目录中包含文件: {saved_files}")
return jsonify({'error': '未找到预测结果。'}), 500
except Exception as e:
logging.error(f"处理请求时出错: {e}")
return jsonify({'error': f'处理过程中发生错误: {e}'}), 500
@app.route('/get/<filename>')
def get_image(filename):
"""获取图像"""
try:
return send_from_directory('runs/detect', filename)
except Exception as e:
logging.error(f"提供文件时出错: {e}")
return jsonify({'error': '文件未找到。'}), 404
def run_gradio():
"""运行 Gradio 界面"""
if os.getenv('HF_SPACE'):
iface.launch(server_name="0.0.0.0", server_port=7890) # 在 Hugging Face Spaces 上运行
else:
iface.launch(server_name="0.0.0.0", server_port=7890, share=True) # 本地运行
def run_flask():
"""运行 Flask 应用"""
app.run(host="0.0.0.0", port=5000)
if __name__ == '__main__':
gradio_thread = Thread(target=run_gradio)
flask_thread = Thread(target=run_flask)
gradio_thread.start()
flask_thread.start()
gradio_thread.join()
flask_thread.join()