Alejadro Sanchez-Giraldo
add train model base code
6e61bae
from transformers import AlbertForSequenceClassification, AlbertTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
# Load a dataset (replace with your dataset)
dataset = load_dataset("text", data_files={"train": "path/to/train.txt", "test": "path/to/test.txt"})
# Preprocess the dataset (tokenization, formatting, etc.)
def preprocess_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
tokenizer = AlbertTokenizer.from_pretrained("albert-base-v2")
tokenized_dataset = dataset.map(preprocess_function, batched=True)
# Load the model
model = AlbertForSequenceClassification.from_pretrained("albert-base-v2", num_labels=2) # Adjust num_labels as needed
# Define training arguments
training_args = TrainingArguments(
output_dir="./results",
num_train_epochs=3,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
warmup_steps=500,
weight_decay=0.01,
evaluate_during_training=True,
logging_dir="./logs",
)
# Initialize the Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
eval_dataset=tokenized_dataset["test"]
)
# Train the model
trainer.train()
# Save the fine-tuned model
model.save_pretrained("path/to/save/model")